Устранение состояния неопределенности линии

Когда передатчики всех устройств, подключенных к лини, находятся в третьем (высокоомном) состоянии, логическое состояние линии и входов всех приемников не определено. Чтобы устранить эту неопределенность, неинвертирующий вход приемника соединяют через резистор с шиной питания, а инвертирующий - с шиной "земли". Величины резисторов выбирают такими, чтобы напряжение между входами стало больше порога срабатывания приемника (+200 мВ).

Поскольку эти резисторы оказываются подключенными параллельно линии передачи, то для обеспечения согласования линии с интерфейсом необходимо, чтобы эквивалентное сопротивление на входе линии было равно 120 Ом.

Например, если резисторы, используемые для устранения неопределенности состояния линии, имеют сопротивление 450 Ом каждое, то резистор для согласования линии должен иметь номинал 130 Ом, тогда эквивалентное сопротивление цепи будет равно 114 120 Ом. Для того, чтобы найти дифференциальное напряжение линии в третьем состоянии всех передатчиков (см. рис. 2.6), нужно учесть, что к противоположному концу линии в стандартной конфигурации подключен еще один резистор сопротивлением 120 Ом и до 32 приемников с входным дифференциальным сопротивлением 12 кОм. Тогда при напряжении питания (рис. 2.6) дифференциальное напряжение линии будет равно +272 мВ, что удовлетворяет требованию стандарта.

Рис. 2.6. Резисторная цепь на выходе трансивера интерфейса, устраняющая неопределенное состояние линии и обеспечивающая ее согласование

Сквозные токи

В сети на основе интерфейса RS-485 может быть ситуация, когда включены два передатчика одновременно. Если при этом один из них находится в состоянии логической единицы, а второй - в состоянии логического нуля, то от источника питания на землю течет "сквозной" ток большой величины, ограниченный только низким сопротивлением двух открытых транзисторных ключей. Этот ток может вывести из строя транзисторы выходного каскада передатчика или вызвать срабатывание их схемы защиты.

Такая ситуация возможна не только при грубых ошибках в программном обеспечении, но и в случае, если неправильно установлена задержка между моментом выключения одного передатчика и включением другого. Ведомое устройство не должно передавать данные до тех пор, пока передающее не закончит передачу. Повторители интерфейса должны определять начало и конец передачи данных и в соответствии ними переводить передатчик в активное или третье состояние.

Выбор кабеля

В зависимости от скорости передачи и необходимой длины кабеля можно использовать либо специально спроектированный для интерфейса RS-485 кабель, либо практически любую пару проводов. Кабель, спроектированный специально для интерфейса RS-485, является витой парой с волновым сопротивлением 120 Ом.

Для хорошего подавления излучаемых и принимаемых помех важно большое количество витков на единицу длины кабеля, а также идентичность параметров всех проводов.

При использовании неизолированных трансиверов интерфейса кроме сигнальных проводов в кабеле необходимо предусмотреть еще одну витую пару для соединения цепей заземления соединяемых интерфейсов. При наличии гальванической изоляции интерфейсов этого делать не нужно.

Кабели могут быть экранированными или нет. Без эксперимента очень трудно решить, нужен ли экран. Однако, учитывая, что стоимость экранированного кабеля не намного выше, лучше всегда использовать кабель с экраном.

Рис. 2.7. Зависимость допустимой длины кабеля от скорости передачи для интерфейса RS-485

При низкой скорости передачи и на постоянном токе большую роль играет падение напряжения на омическом сопротивлении кабеля. Так, стандартный кабель для интерфейса RS-485 сечением 0,35 кв.мм имеет омическое сопротивление 48,5 * 2 = 97 Ом при длине 1 км. При терминальном резисторе 120 Ом кабель будет выполнять роль делителя напряжения с коэффициентом деления 0,55, т. е. напряжение на выходе кабеля будет примерно в 2 раза меньше, чем на его входе. Этим ограничивается допустимая длина кабеля при скорости передачи менее 100 кбит/с.

На более высоких частотах допустимая длина кабеля уменьшается с ростом частоты (рис. 2.7) и ограничивается потерями в кабеле и эффектом дрожания фронта импульсов. Потери складываются из падения напряжения на омическом сопротивлении проводников, которое на высоких частотах возрастает за счет вытеснения тока к поверхности (скин-эффект) и потерь в диэлектрике. К примеру, ослабление сигнала в кабеле Belden 9501PVC составляет 10 дБ (3,2 раза) на частоте 20 МГц и 0,4 дБ (на 4,7%) на частоте 100 кГц [RS] при длине кабеля 100 м.

Параметр дрожания фронта импульсов определяется с помощью "глазковой диаграммы" [Кузнецов, Long]. На вход линии подается псевдослучайная двоичная последовательность импульсов, минимальная ширина которых соответствует заданной скорости передачи, к выходу подключается осциллограф. Если к моменту прихода очередного импульса переходный процесс, вызванный предыдущим импульсом, не успевает установиться, то "хвост" предыдущего импульса складывается с началом очередного, что приводит к сдвигу точки пересечения импульсами нулевого уровня на входе дифференциального приемника. Величина сдвига зависит от ширины импульсов и длительности паузы между ними. Поэтому, когда на вход линии подают псевдослучайную двоичную последовательность импульсов, то на осциллографе, подключенном к выходу линии, описанный сдвиг проявляется как размытость или дрожание фронтов импульсов, наложенных друг на друга. Это дрожание ограничивает возможность распознавания логических уровней и скорость передачи информации. Величина дрожания оценивается в процентах относительно ширины самого короткого импульса (см. рис. 2.8). Чем больше дрожание, тем труднее распознать сигнал и тем ниже достоверность передачи.

На рис. 2.8 показана зависимость допустимой длины кабеля от скорости передачи при скоростях более 100 кбит/с и использовании трансивера DS3695 фирмы National Semiconductor [Ten]. Зависимость построена для трех значений показателей качества передачи сигнала, которые оценивается величиной дрожания фронта импульса. Как видно, допустимая длина может быть увеличена при снижении требований к качеству передачи. Нижняя кривая на рис. 2.8 показана для случая, когда длительность фронта импульса после прохождения сигнала по линии увеличивается до 30% от ширины импульса. Увеличение длительности фронтов на конце линии - вторая причина, по которой длина линии не может быть больше указанной на рис. 2.8.