Свойства высот треугольника
Планиметрия. Тема 1. Углы треугольника. Тригонометрические функции углов. Решение треугольников.
Виды треугольников
Треугольник называется равнобедренным, если у него две стороны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.
Треугольник, у которого все стороны равны, называется равносторонним или правильным.
Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.
Треугольник называется остроугольным, если все три его угла — острые, то есть меньше 90°.
Треугольник называется тупоугольным, если один из его углов — тупой, то есть больше 90°.
Замечание: Сумма углов любого треугольника равна 180 градусам!
Основные линии треугольника
Медиана
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны этого треугольника.
Свойства медиан треугольника
1. Медиана разбивает треугольник на два треугольника одинаковой площади.
2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.
3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.
4. Медиана, опущенная из середины прямого угла равна половине гипотенузы и равна радиусу описанной окружности.
5. В равнобедренном треугольнике медиана, проведенная из вершины, является так же биссектрисой и высотой.
Биссектриса
Биссектриса угла — это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
Свойства биссектрис треугольника
1. Биссектриса угла — это геометрическое место точек, равноудаленных от сторон этого угла.
2. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам: .
3. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
4. Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.
Высота
Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.
Свойства высот треугольника
1. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
2. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Срединный перпендикуляр
Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
2. Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
Средняя линия
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.