Пересечение поверхностей геометрических тел

Плоскостями.

Сечение гранных тел плоскостью общего положения

Плоскость задана пересекающимися прямыми (горизонталью и фронталью).

Геометрическое тело - трехгранная призма.

 
 


А2

f 2 С2

 
 


H 2 В2

 
 


1 2

Х1,2

f 1

1 1 3 1

 
 


h1 2 1

А1

С1

 
 


В 1 3 4


1 4

В 4

Х 1,4 А4 C4

 
 


Построить фигуру сечения можно используя различные, уже известные нам методы. Применим метод замены плоскостей проекций.

 

Выберем новую ось Х1,4 так, чтобы она была перпендикулярна к горизонтальной проекции горизонтали. Тогда горизонталь на плоскость П4 спроектируется в точку, а плоскость заданная горизонталью и фронталью - в линию( т.е. займет проецирующее положение).

Построим на плоскости П4 проекцию призмы. Вспомним порядок построения на примере точки 1 принадлежащей призме.

От проекции 11 проведем линию проекционной связи перпендикулярно оси Х 1,4. Циркулем замерим расстояние от оси Х1,2 до проекции точки 1 2 и отложим равное ему расстояние по линии проекционной связи от оси Х 1,4. Получим положение проекции точки

1 4 . После построения проекции призмы на плоскость П4, отметим точками А4 В4 С4 фигуру сечения призмы плоскостью. Эта фигура здесь очевидна, так как мы помним свойство проецирующих плоскостей. Теперь, чтобы получить фигуру сечения на плоскости П 1 и П 2 необходимо по линиям проекционной связи спроектировать точки АВС на соответствующие проекции ребер призмы.

Если перед нами стоит задача получить натуральную величину фигуры сечения , то мы можем сделать еще одну замену плоскости проекций , когда ось Х 4,5 пройдет параллельно проекции А4 В4 С4.

Можно использовать метод плоскопараллельного переноса или повернуть вокруг оси перпендикулярной плоскости П4 так, чтобы фигура сечения стала параллельна горизонтальной плоскости проекций. Для это надо вспомнить прошлую лекцию.

 

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

ГЕОМЕТРИЧЕСКИХ ТЕЛ

Пересечение двух поверхностей находят :

1) способом вспомогательных секущих плоскостей,

2) способом сфер или вспомогательных шаровых поверхностей.

 

В первую очередь находят характерные (опорные) точки искомой линии пересечения. К таким точкам можно отнести точки которые лежат на проекциях контурных линий поверхности, точки расположенные на главном меридиане, в экваторе шара,крайние точки справа и слева, наивысшие и наинизшие точки. Иные точки принято называть промежуточными.

Построив линию пересечения двух поверхностей необходимо определить видимость. Невидимые части необходимо показывать штриховой линией.

Если одна из поверхностей имеет прямолинейные образующие, то линию пересечения можно найти нанося на поверхность ряд образующих, определив их точки пересечения с другой поверхностью.

Затем плавной кривой соединим эти точки.

Построим линию пресечения конической поверхности и соосного с ней прямого геликойда.Каждую из этих поверхностей мы уже рассматривали. Коническую поверхность неоднократно рассекали плоскостью и знаем какая фигура сечения будет в зависимости от положения секущей плоскости.

Вспомним как образовывалась поверхность геликоида :

Скользя по неподвижной винтовой линии отрезок АВ перпендикулярный к оси j опишет поверхность называемую прямым закрытым геликоидом. Эта поверхность может быть отнесена еще и к коноидам.

Давайте определим такой порядок построения линии пересечения поверхностей. Будем проводить в геликойде образующие и определять в какой точке каждая из образующих геликойда пересекла коническую поверхность.

 
 


Т3

Т2

·

. Т1

. 1

.

.

.

.

. 5

.

. 6 4

.

.

.

.

. 7

. 3

.

.

.

8 2

.

.

. 1

.

.

.

.

.

Для определения точки пересечения каждую из образующих заключим во вспомогательную плоскость, таким образом чтобы фигурой сечения плоскости и конуса была окружность.

Точка пересечения окружности с образующей будет принадлежать одновременно трем поверхностям - вспомогательной плоскости, конусу и геликойду. Построим обе проекции этой точки. Они лежат на образующей геликойда.

Построение образующих геликойда начнем с горизонтальной проекции. Для этого окружность разобьем на восемь частей.

Вспомним как мы это уже делали. Найдем фронтальную проекцию образующей воспользовавшись винтовой линией - гелисой.

Заключим образующую во фронтальнопроецирующую плоскость Т, которая рассечет конус параллельно основанию. Радиус окружности можно замерить от оси до очерковой образующей конуса.

Построим эту окружность на горизонтальной проекции. Она пересечет образующую геликойда в некоторой точке которая будет принадлежать искомой фигуре сечения. Найдем фронтальную проекцию этой точки.

Далее аналогично.