Обобщенный метод наименьших квадратов (ОМНК)
При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).
Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности.
Как и раньше, будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине
, т.е.
,
где
– дисперсия ошибки при конкретном
-м значении фактора;
– постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков;
– коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.
При этом предполагается, что
неизвестна, а в отношении величин
выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.
В общем виде для уравнения
при
модель примет вид:
. В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе
-го наблюдения, на
. Тогда дисперсия остатков будет величиной постоянной, т. е.
.
Иными словами, от регрессии
по
мы перейдем к регрессии на новых переменных:
и
. Уравнение регрессии примет вид:
,
а исходные данные для данного уравнения будут иметь вид:
,
.
По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные
и
взяты с весами
.
Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида
.
Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные
и
взять в отклонениях от средних уровней, то коэффициент регрессии
можно определить как
.
При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии
определяется по формуле:
.
Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии
представляет собой взвешенную величину по отношению к обычному МНК с весом
.
Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида
,
для которой дисперсия остаточных величин оказалась пропорциональна
.
представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих
значений факторов
и
. Ввиду того, что
,
рассматриваемая модель примет вид
,
где ошибки гетероскедастичны.
Для того чтобы получить уравнение, где остатки
гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности
. Уравнение с преобразованными переменными составит
.
Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:
.
Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности
. В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки
пропорциональны значениям фактора. Так, если в уравнении

предположить, что
, т.е.
и
, то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:
.
Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных
имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.
Пример. Пусть
– издержки производства,
– объем продукции,
– основные производственные фонды,
– численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что
пропорциональна квадрату численности работников
, мы получим в качестве результативного признака затраты на одного работника
, а в качестве факторов следующие показатели: производительность труда
и фондовооруженность труда
. Соответственно трансформированная модель примет вид
,
где параметры
,
,
численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фовдовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.
Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции,
, можно перейти к уравнению регрессии вида
.
В нем новые переменные:
– затраты на единицу (или на 1 руб. продукции),
– фондоемкость продукции,
– трудоемкость продукции.
Гипотеза о пропорциональности остатков величине фактора может иметь реальное основание: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.
При наличии одной объясняющей переменной гипотеза
трансформирует линейное уравнение

в уравнение
,
в котором параметры
и
поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.
Пример. Рассматривая зависимость сбережений
от дохода
, по первоначальным данным было получено уравнение регрессии
.
Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:
.
Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра
зависимости сбережений от дохода.
Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Процесс перехода к относительным величинам может быть осложнен выдвижением иных гипотез о пропорциональности ошибок относительно включенных в модель факторов. Использование той или иной гипотезы предполагает специальные исследования остаточных величин для соответствующих регрессионных моделей. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.