|
|||
Категории: АстрономияБиология География Другие языки Интернет Информатика История Культура Литература Логика Математика Медицина Механика Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Транспорт Физика Философия Финансы Химия Экология Экономика Электроника |
Схема 1-1. Основные органеллы эукариотических клетокКлеточные органоиды: их строение и функции
Состав химических соединений живой клетки
Растительная клетка Строение растительной клетки: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.
Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды. Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности. Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности. Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков. Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество. Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты .
Прокариотическая клетка
E. coli и более мелкие бактерии
Рис. Комбинированное схематическое изображение прокариотической (бактериальной) клетки со жгутиками схематично представленными в правой части рисунка, дополнительные мембранные структуры, имеющиеся у фототрофных и нефототрофных бактерий, - в средней части, а включения запасных веществ - в левой части. Для большей наглядности показаны лишь немногие рибосомы, особенно в левой части схемы. 1 - гранулы полиоксимасляной кислоты; 2 - жировые капельки; 3 - включения серы; 4 - трубчатые тилакоиды; 5 - пластинчатые тилакоиды; 6 - пузырьки; 7 - хроматофоры; 8 - ядро (нуклеоид); 9 - рибосомы; 10 - цитоплазма; 11 - базальное тельце; 12 - жгутики; 13 - капсула; 14 - клеточная стенка; 15 - цитоплазматическая мембрана; 16 - мезосома; 17 - газовые вакуоли; 18 - ламеллярные структуры; 19 - гранулы полисахарида; 20 - гранулы полифосфата (Шлегель Г., 1987). Прокариотическая клетка — простейший тип живой клетки . К прокариотам относятся такие одноклеточные организмы, как бактерии и синезеленые водоросли. Определяющей особенностью прокариотической клетки является наличие прямого контакта между ее хромосомой и цитоплазмой. Хромосомы эукариотической клетки, напротив, заключены в мембранную структуру — ядро. От эукариотических клеток прокариоты отличаются, кроме того, отсутствием митохондий и хлоропластов, меньшими размерами рибосом (их коэффициент седиментации 70S), а также весьма ограниченной — из - за наличия клеточной стенки - способностью выделять и поглощать крупные молекулы. Хромосома в прокариотической клетке всего одна. Она представляет собой непрерывный кольцевой тяж двухцепочечной ДНК. Молекула ДНК может достигать длины около 1 мм (например, у бактерии Е . coli); в клетке она обычно туго скручена в компактную спиральную структуру . Существуют также внехромосомные ДНК-содержащие элементы — плазмиды. Это маленькие кольцевые структуры, несущие лишь по нескольку генов; некоторые из них могут кодировать такие ферменты, благодаря которым клетка становится устойчивой к различным антибиотикам. Плазматическая мембрана клетки состоит из липидов и белков . Она служит полупроницаемым барьером контролирующим перенос малых молекул и ионов в клетку и из клетки. Мезосома представляет собой впячивание плазматической мембраны в цитоплазму. Она содержит многослойную мембранную систему, которая своей цитоплазматической стороной часто связана с ДНК. Считается, что мезосомы участвуют в клетке в двух разных процессах: они могут служить местом прикрепления ДНК (особенно во время репликации ) и играть определенную роль в секреции. Клеточная стенкарасположена снаружи от плазматической мембраны и покрывает всю клетку. Она сообщает клетке жесткость, придает ей определенную форму, а также защищает ее от повреждения при осмотических и механических воздействиях. У бактерий клеточная стенка представляет собой жесткую сеть из липидов, полисахаридов и белков. В структурном отношении бактериальная клеточная стенка бывает в основном двух типов; в соответствии с этим бактерии разделяют на грамположительные и грамотрицательные. У синезеленых водорослей клеточная стенка построена из простых полисахаридов, таких как целлюлоза. Желатиновый слой ( гликокаликс) — самый наружный слой прокариотической клетки; чаще всего он встречается у синезеленых водорослей. Жгутик— белковая органелла, отходящая от поверхности клетки в виде вытянутого отростка длиной от 1 до 20 мкм. С помощью жгутиков клетка перемещается в жидкой среде. Рибосома — сложная органелла, в которой осуществляется синтез белка. В связи с тем что бактерии размножаются с высокой скоростью, рибосомы могут составлять до 40% массы клетки. Рибосома — это комплекс молекул белков иРНК (рРНК), образующих почти сферическую частицу диаметром 20 нм. В рибосоме можно выделить две части — большую и малую субчастицы. Большая субчастица состоит из 34 разных белков , связанных с большой (23S) и малой (5S) молекулами рРНК. Малая субчастица содержит 21 белок и молекулу рРНК среднего размера (16S). Энергия для процессов биосинтеза в прокариотической клетке поступает из двух основных источников. Первый — это нуклеозидтрифосфат, АТР, который образуется в результате катализируемого группой ферментов гликолиза за счет энергии, содержащейся в молекулах такого рода питательных веществ, как гексозы (например, глюкозы. Энергия, запасенная в АТР, может затем использоваться множеством разных ферментов в анаболических (биосинтетических) процессах. Второй, самый важный источник энергии — это АТР, синтезируемый с помощью группы белков, расположенных рядом друг с другом в плазматической мембране и образующих так называемую цепь переноса электронов. Эта цепь, в конце которой происходит восстановление кислорода до воды, получает электроны от атомов водорода, продуцируемых в цикле Кребса при окислении кислотных субстратов. Образующиеся ионы Н+ «откачиваются» через бактериальную мембрану транспортными белками, в результате чего между вне- и внутриклеточным пространством возникает разность рН и электрического потенциала . Запасенная в таком электрохимическом градиенте свободная энергия используется для синтеза молекул АТР в расположенных в мембране так называемых F1 - частицах . Фотосинтезирующие клетки, такие как синезеленые водоросли и фотосинтезирующие бактерии, про-изводят энергию для метаболических процессов, поглощая энергию видимого света. У синезеленых водорослей фотосинтетические мембраны — ламеллы - содержат специальные пигменты, функция которых состоит в поглощении световой энергии и превращении ее в химическую для синтеза АТР. Поскольку прокариотические водоросли способны использовать диоксид углерода в качестве единственного иcточника углерода, т.е. могут «фиксировать» углерод, включая его в сложные молекулы, их называют автотрофами . Фотосинтезирующие бактерии содержат специальные белки, например бактериородопсин (гл . 34), располагающиеся в плазматической мембране и реагирующие на свет созданием протонного градиента путем перекачивания ионов Н+ через мембрану в одном на -правлении. Энергия возникающего таким образом электрохимического градиента используется затем для обеспечения синтеза АТР. Эти бактерии отличаются, однако, от синезеленых водорослей тем , что они неспособны фиксировать СО2. Для осуществления биосинтеза они вынуждены извлекать углерод из уже существующих органических молекул, и по этой причине их называют гетеротрофами. Транспорт малых молекул и ионов через плазматическую мембрану осуществляется особыми механизмами. Эндоцитоз или поглощение белков и других макромолекул, находящихся в контакте с клеточной поверхностью, у прокариот происходит редко, однако у них возможен экзоцитоз.
Животная клетка
Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки. Органоиды клетки:
1) эндоплазматическая сеть (ЭПС) — система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;
Схема 1-1. Основные органеллы эукариотических клеток Рисунок Схема строения ядра клетки
Строение дрожжевой клетки Дрожжевые клетки имеют округлую или эллипсовидную форму с размером в поперечнике от 2,5 до 10 мкм и от 4,5 до 21 мкм в длину. На рис. 1 приведено графическое изображение среза дрожжевой клетки. Клеточная стенка, клеточная мембрана, ядро, митохондрии, вакуоли - структуры клетки, видимые в световой микроскоп с сухим объективом при использовании специфических красителей. Клеточная стенка представляет собой жесткую структуру толщиной 25 нм, составляет около 25% сухой массы клетки и состоит в основном из глю-кана, манана, хитина и белка. Организация клеточной стенки недостаточно изучена, однако современные теории отдают предпочтение модели трехслойной структуры, согласно которой внутренний глюкановый слои отделен от внешнего мананового промежуточным слоем с повышенным содержанием белка.
Рис. 1. Графическое изображение среза дрожжевой клетки (в 1 сантиметре 1 микрометр)
Saccharomyces cerevisiae
E. сoli-Scerevisiae.jpg (50KB, MIME type: image/jpeg) Escherichia coli (little forms) & Saccharomyces cerevisiae (big forms) by MEB
Рисунок 16. Схематический поперечный разрез дрожжевой клетки
Д– диктиосома, Ж– жировая капелька, К ст–клеточная стенка, Мит–митохондрия, П– гранулы полифосфата, ПМ– плазматическая мембрана, Руб– рубец, после отпочковывания дочерней клетки, ЦПл– цитоплазма, содержащая рибосомы, Эр– ЭПС, Яш– ядрышко. |