Настройка панелей для работы 1 страница

И нтенсивная

Т ехнология

М одульного

О бучения

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Методические указания и индивидуальные задания

МОДУЛЬ – 1

 

Курск 1999

 

 

Составитель А.Н. Фёдоров

УДК 519.4

Элементы линейной алгебры: Методические указания и индивидуальные задания к модулю 1 системы "РИТМ"/ Курск. гос. техн. ун-т; Сост. А.Н. Фёдоров. Курск, 1999. 43с.

Методические указания отражают требования образовательного стандарта уровня подготовки бакалавра по техническим специальностям. Работа содержит теоретические упражнения, практические индивидуальные задания, контрольные вопросы, инструкции к пользованию ЭВМ, указания к выполнению и разбор наиболее сложных примеров.

Предназначены для технических специальностей.

 

Табл. 6. Библиогр.: 5 назв.

 

Рецензент канд. техн. наук, доцент кафедры высшей математики В.И. Дроздов.

 

Редактор Т.Н. Иванова.

 

 

ЛР № 020280 от 9.12.96. ПЛД № 50-25 от 1.04.97.

Подписано в печать . Формат 60х84 1/16. Печать офсетная. Усл. печ. л. . Уч.-изд. л. . Тираж 100 экз. Заказ . Бесплатно.

Курский государственный технический университет.

Подразделение оперативной полиграфии Курского государственного технического университета.

Адрес университета и подразделения оперативной полиграфии: 305040 Курск, ул. 50 лет Октября, 94.

 

С О Д Е Р Ж А Н И Е

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. Теоретические упражнения . . . . . . . . . . . . . . . . . . . . . . 5

Практические задания . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Задание 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Задание 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Задание 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Задание 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Задание 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Задание 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Задание 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Задание 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Задание 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Задание 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Задание 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Задание 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Задание 2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Задание 2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Применение ЭВМ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1. Использование MATHCAD . . . . . . . . . . . . . . . . . 31

3.1.1. Вычисление определителя . . . . . . . . . . . . . . 31

3.1.2. Обращение матрицы . . . . . . . . . . . . . . . . . . . 32

3.1.3. Решение систем линейных уравнений. . . . . 32

3.1.4. Выполнение алгебраических действий

над матрицами . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.5. Решение квадратных уравнений . . . . . . . . . 33

3.1.6. Операции над матрицами с параметрами . 33

3.2. Использование АРММ . . . . . . . . . . . . . . . . . . . . . 34

4. Указания к решению наиболее сложных заданий . . . 34

4.1. Пример выполнения задания 2.4 . . . . . . . . . . . 34

4.2. Пример выполнения задания 2.11 . . . . . . . . . 35

4.3. Пример выполнения задания 2.12. . . . . . . . . . 36

4.4. Пример выполнения задания 2.13 . . . . . . . . . 38

4.5. Пример выполнения задания 2.14. . . . . . . . . . 40

5. Контрольные вопросы . . . . . . . . . . . . . . . . . . . . . . . . 42

Список рекомендуемой литературы . . . . . . . . . . . . . . . 43

 

ВВЕДЕНИЕ

 

 

Данные методические указания содержат задания для контроля знаний студентов по теме: “Линейная алгебра”. Предусмотрены 3 уровня сложности. Для каждого из них предлагается одно теоретическое упражнение и практические задания, соответственно уровню, с номерами:

2.1, 2.2, 2.3, 2.5, 2.6, 2.9, 2.10, 2.11 – для первого уровня;

2.1, 2.3, 2.4, 2.6, 2.8, 2.10, 2.11, 2.13, 2.14 – для второго уровня;

2.1, 2.3, 2.4, 2.6, 2.7, 2.8, 2.10, 2.11, 2.12, 2.13, 2.14 – для третьего

уровня.

Представлено 100 индивидуальных вариантов. Номер варианта даёт лектор, который проводит общую нумерацию студентов в потоке.

При выполнении каждого из заданий рекомендуется применение ЭВМ, пакета MATHCAD и специальных программных разработок кафедры. Задания 2.3, 2.6, 2.10 предполагают обязательное решение только на ЭВМ, для остальных заданий требуется представить ручное решение, а ЭВМ используется для получения верных ответов и уменьшения объёма арифметических вычислений.

Необходимые инструкции по использованию программного обеспечения даны в данных методических указаниях.

Представлены также указания по выполнению и рассмотрены примеры к наиболее сложным заданиям 2.4, 2.11, 2.12, 2.13, 2.14.

Для подготовки к защите модуля представлен список контрольных вопросов.

Для выполнения модуля достаточно аккуратно записанных лекций. Кроме того, весь теоретический материал по данной теме хорошо представлен в учебниках из следующего списка:

Матрицы и действия над ними - [1, гл. 1, §1]; [2, гл. 5, §1].

Определители и обратные матрицы - [1, гл. 1, §2]; [2, гл. 5, §2]; [4, доп. к гл. 1, п. 1-5].

Системы линейных уравнений - [1; гл. 1, §3], [2; гл. 5, §§ 4,5],

[4; доп. к гл. 1, п 7-9]

 

ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

 

1. Доказать, что для любых матриц A, B, C для которых определены A×B и B×C , имеет место равенство: A×(B×C)=(A×B)×C.

2. Доказать ( лемма о транспонировании произведения матриц ), что для любых матриц A и B, для которых определено произведение A×B, имеет место равенство: (A×B)t = Bt × At.

3. Доказать, что всякую квадратную матрицу можно представить в виде суммы симметрической и кососимметрической матриц. (A называется симметрической, если A = At , и кососимметрической, если A = - At ).

4. Доказать тождество Якоби: [[A,B],C] + [[B,C],A] + [[C,A],B] = 0, где [A,B]=A×B - B×A означает скобочное умножение.

5. Доказать, что если A,B - квадратные матрицы одного и того же размера, то сумма коэффициентов по главной диагонали для матриц A×B и B×A одинакова.

6. Доказать, что число различных чётных перестановок порядка n равно числу нечётных.

7. Среди перестановок порядка n указать перестановку с наибольшим числом инверсий. Вывести формулу для этого числа.

8. Перечислить все перестановки 4-го порядка с 0,1,2,3,4,5 и 6 инверсиями (сгруппировать по числу инверсий ).

9. Доказать свойства определителя: а) определитель равен нулю, если равна нулю некоторая строка матрицы, б) определитель равен нулю, если две каких-либо строки матрицы равны, в) определитель меняет знак на противоположный при перестановке 2 строк.

10. Доказать формулы Крамера.

11. Доказать равенство: det(A×B)=det(A)×det(B).

12. Пусть квадратные матрицы. Доказать,

что .

13. Доказать, что если для всех , то для некоторого . (A, X – квадратные матрицы, E– единичная матрица).

14. Доказать, что если определитель матрицы равен нулю, то одну

из ее строк можно представить в виде суммы других строк с некоторыми коэффициентами.

15. Доказать, что определитель не меняется при транспонировании матрицы.

16. Доказать, что ранг произведения матриц не выше любого из

рангов сомножителей.

17. Пусть r - ранг матрицы. Доказать, что можно выбрать r базис-ных столбцов так, что любой столбец матрицы можно представить

в виде суммы базисных столбцов с некоторыми коэффициентами.

18. Доказать теорему о существовании и единственности обратной матрицы.

19. Доказать теорему Кронекера-Капелли.

20. Доказать, что ранг суммы матриц не более суммы рангов слага-

емых.

21. Доказать, что если системы A×X = B и A-1× X = B имеют одно и

то же решение, то это же решение будет иметь система A3×X=B.

22. Пусть - некоторое решение неопределённой системы A×X = B. Доказать, что любое другое решение этой системы можно представить в виде: , где - некоторое решение однородной системы .

23. Доказать, что множество решений системы линейных уравне-ний не меняется при следующих элементарных преобразованиях расширенной матрицы системы:

а) перестановка строк;

б) умножение строки на число не равное нулю;

в) прибавление к одной строке другой строки, умноженной на любое число;

г) перестановка столбцов, исключая последний ( при этом меняются местами соответствующие неизвестные системы ).

24. Квадратные матрицы А, обладающие свойством A×At = E на-зываются ортогональными. Доказать, что произведение ортогона-льных матриц - тоже ортогональная матрица, обратная к ортогона-льной матрице - тоже ортогональная матрица.

25. Показать, что если все коэффициенты квадратной матрицы, стоящие на главной диагонали и ниже, равны нулю, то n-я степень этой матрицы равна нулю, где n - число строк матрицы.

 

 

2. ПРАКТИЧЕСКИЕ ЗАДАНИЯ

 

Задание 2.1

 

 

Сначала выберите вариант. Вариант определяется номером n. По номеру найдите значения 6 параметров рi, i = 2, 3, …, 7, по прави-

лу: рi равно остатку от деления n на i. ( Например, если n = 58, то ).

Вычислить выражение

.

 

Задание 2.2

 

 

По правилу треугольников найти определитель матрицы А раз-

мера 3 ´ 3.

Матрицу А взять из табл. 2.2, вычеркнув последний столбец

из матрицы Ар.

 

Задание 2.3

 

 

Пользуясь программным обеспечением ЭВМ, найти определи-

тель матрицы А размера 4 ´ 4.

Матрицу А взять из табл. 2.3, вычеркнув последний столбец

из матрицы Ар.

Задание 2.4

 

Найти определитель матрицы А размера 3 ´ 3, взятой из нижес-

ледующей табл. 2.1.

При решении использовать элементарные преобразования над строками или столбцами матрицы, не изменяющие определителя.

Сначала уменьшить элементы матрицы путём вычитания из одной строки (или столбца) другой строки (или столбца), умноженной

на некоторое число. Затем, с помощью этого же преобразования,

получить два нуля в одной строке (или столбце). Наконец, раз-

лагая определитель по этой строке (или столбцу), свести вычис-

ления к определителю 2-го порядка.

 

Таблица 2.1

К заданию 2.4

N А n А n А n А n A

1 2 3 4 5 6 7 8 9 10

36 33 32 34 31 33 28 29 32 36 31 33 28 30 36

45 42 39 46 38 41 39 44 46 41 40 40 46 39 38

1 56 49 49 2 48 51 53 3 49 54 54 4 49 49 54 5 56 49 48

30 34 36 32 35 36 31 31 36 35 28 36 36 31 34

44 38 38 39 38 42 46 40 43 40 43 39 41 38 40

6 49 53 50 7 48 50 55 8 54 55 49 9 54 50 50 10 51 55 55

36 33 33 32 29 29 29 33 31 32 32 35 30 29 29

42 38 45 44 41 45 40 46 40 42 44 41 39 43 46

11 52 56 55 12 48 48 56 13 51 50 49 14 55 53 54 15 49 56 50

28 32 36 31 28 30 28 34 35 29 31 31 34 36 36

40 40 45 44 46 40 45 40 39 46 39 43 39 45 38

16 50 55 49 17 53 56 48 18 48 53 48 19 56 48 53 20 49 52 48

31 36 30 32 29 29 29 35 30 29 33 35 36 35 31

40 45 40 44 41 45 41 44 41 39 41 44 38 41 39

21 51 55 48 22 48 48 56 23 48 49 48 24 56 53 56 25 55 55 53

31 35 33 35 30 30 33 32 28 35 29 36 29 32 36

38 39 42 44 42 41 41 41 44 38 45 42 40 46 42

26 53 52 51 27 48 54 49 28 56 54 49 29 51 49 54 30 49 52 53

36 29 28 33 32 32 35 29 32 30 29 32 36 34 29

41 44 40 45 45 41 41 39 41 38 44 41 40 43 38

31 55 51 51 32 55 51 54 33 51 51 53 34 48 48 55 35 52 55 52

Продолжение табл. 2.1

1 2 3 4 5 6 7 8 9 10

36 32 31 35 29 30 32 35 32 29 36 28 29 28 33

44 40 39 44 43 39 42 38 42 38 39 39 42 44 42

36 49 54 54 37 48 51 49 38 56 49 55 39 51 51 55 40 53 53 51

29 31 30 36 34 33 31 28 28 33 32 31 35 34 29

45 40 38 41 41 38 40 42 43 45 42 45 43 38 46

41 53 49 50 42 55 54 48 43 54 48 51 44 50 48 55 45 55 50 52

30 36 28 28 34 34 28 36 28 36 28 34 28 32 36

41 44 46 42 38 42 41 42 42 39 43 40 45 46 42

46 50 48 54 47 56 49 48 48 51 52 49 49 48 51 50 50 48 55 50

35 32 32 33 30 32 35 28 29 28 35 35 31 31 34

42 39 41 41 42 39 40 45 39 42 45 44 44 43 39

51 52 52 52 52 55 55 54 53 52 53 50 54 52 49 56 55 52 51 55

32 36 29 33 34 28 29 30 36 31 28 33 35 29 31

40 38 41 44 44 46 40 45 38 38 42 41 45 38 43

56 54 56 54 57 51 51 52 58 50 53 56 59 52 54 49 60 50 53 55

28 33 29 32 32 30 30 29 34 29 30 33 29 30 31

45 45 40 40 42 46 40 46 38 40 39 42 46 40 41

61 56 49 56 62 50 52 53 63 51 53 51 64 56 56 48 65 53 55 56

35 32 30 33 35 29 32 29 31 32 35 31 29 31 29

43 41 41 44 45 44 43 40 39 40 46 40 42 38 46

66 52 54 48 67 55 50 48 68 48 55 55 69 52 53 53 70 54 54 50

32 33 31 29 36 32 30 28 33 32 31 31 32 28 29

39 42 39 40 46 40 42 42 46 45 46 46 46 38 38

71 55 56 55 72 55 49 53 73 53 56 49 74 55 56 52 75 50 49 50

33 29 36 29 33 35 34 28 30 36 33 34 32 28 35

44 40 41 43 46 46 41 38 41 44 42 42 42 44 46

76 55 48 53 77 48 52 49 78 55 51 52 79 53 53 50 80 51 54 52

29 30 33 36 36 35 28 29 36 28 29 28 30 29 31

42 46 39 44 43 41 44 44 40 38 40 45 42 38 42

81 53 49 51 82 49 53 49 83 54 49 49 84 52 56 52 85 52 53 52

32 33 35 30 31 35 32 32 31 35 35 30 33 29 29

45 40 46 44 42 44 43 38 42 43 43 39 43 39 39

86 53 49 56 87 56 52 49 88 48 48 55 89 49 50 50 90 51 52 50

34 32 36 35 32 34 31 34 32 29 28 28 31 28 35

38 42 41 43 44 41 44 42 46 42 38 38 38 42 46

91 53 56 56 92 48 48 48 93 53 53 48 94 49 56 51 95 50 54 48

35 35 29 32 31 30 32 34 30 35 32 29 34 33 31

39 39 43 42 41 41 45 41 40 40 45 40 45 44 41

96 56 55 50 97 48 49 49 98 48 48 53 99 54 56 54 00 48 48 53

 

Задание 2.5

 

 

Найти обратную матрицу для той же матрицы А, что в зада-

нии 2.2.

При решении воспользоваться формулой, выражающей А-1

через алгебраические дополнения и определитель матрицы А.

Значение определителя взять из решения задания 2.2.

 

Задание 2.6

 

 

Пользуясь программным обеспечением ЭВМ, найти обратную матрицу для той же матрицы, что в задании 2.3.

 

Задание 2.7

 

 

Решить систему 3-х уравнений с 3-мя неизвестными по форму-

лам Крамера.

Расширенную матрицу системы взять из табл. 2.2. Значение главного определителя взять из решения задания 2.2.

 

Задание 2.8

 

 

Решить ту же систему, что в задании 2.7, матричным способом.

Обратную матрицу взять из решения задания 2.5.

 

Задание 2.9

 

 

Решить ту же систему, что в задании 2.7, методом Гаусса.

 

Таблица 2.2

К заданиям 2.2, 2.5, 2.7, 2.8, 2.9

 
 


n Ар n Ар n Ар n Ар

1 2 3 4 5 6 7 8

-1 -3 -3 -38 2 1 -5 -9 -2 2 -5 -20 -2 3 -3 -4

5 3 5 68 -1 -1 -2 -10 2 6 -3 4 -1 -2 4 10

1 -5 2 6 17 2 -3 -3 2 -6 3 -5 -5 3 -8 4 6 4 2 48

6 -3 1 -3 5 2 -1 18 2 1 3 15 1 -5 -2 -30

5 2 1 25 -1 -2 -3 -18 6 -2 2 14 -2 -5 5 -27

5 -5 4 6 32 6 -3 -2 1 -14 7 -2 -5 3 -5 8 -1 3 6 30

-2 -3 4 1 -3 2 5 12 1 -1 2 5 -2 -1 2 1

2 2 -5 -9 4 1 -1 23 6 4 1 37 3 4 1 31

9 2 3 5 44 10 2 3 2 34 11 -5 -3 1 -24 12 -5 -5 -1 -40

-5 2 2 -16 4 1 2 26 1 -2 -1 -3 6 -2 3 20

3 -1 -1 11 -5 1 -3 -29 5 -1 6 34 -5 -2 5 -9

13 -2 1 -2 -20 14 3 5 4 33 15 3 6 -3 27 16 -2 2 2 2

-2 -1 -1 -14 -5 -5 -5 -40 -1 -1 2 0 -2 -5 1 -16

-3 -1 -5 -36 -1 -3 4 -4 5 -1 3 27 -3 -1 -5 -37

17 3 1 2 21 18 -5 1 6 0 19 5 5 -1 27 20 -1 5 -3 -7

2 -2 -2 -6 -1 -3 -2 -14 6 -1 1 37 -1 -5 3 -14

6 3 1 23 2 6 2 22 6 -1 -5 13 -3 -2 -2 -34

21 3 1 5 19 22 -3 6 1 9 23 -5 2 -3 -36 24 -2 -2 -3 -32

1 1 3 14 1 1 2 11 5 -5 -3 -38 -2 -3 1 -11

4 -1 -2 3 -1 3 -5 -5 -5 -2 -3 -40 4 -2 1 10

25 1 -1 -3 -8 26 -1 -3 -3 -19 27 -5 -2 6 14 28 -3 1 -3 -18

1 1 5 39 -5 -5 4 -43 -3 -5 -2 -27 6 1 1 24

-3 4 -5 -22 6 -3 6 39 5 4 5 37 -3 4 -1 -5

29 3 1 6 53 30 2 4 1 35 31 -3 -5 -5 -36 32 -2 -3 -3 -24

5 3 3 44 1 2 3 23 -1 2 -1 -4 5 -2 2 36

-3 4 -1 -5 4 -2 1 9 1 -1 -2 -6 6 1 -3 21

33 3 -5 -1 -8 34 1 -3 5 4 35 -5 5 -2 -18 36 6 -5 -1 15

-5 -1 -3 -35 4 -5 1 15 -2 2 1 5 -3 2 1 -4

4 4 -3 2 4 -3 6 44 -2 6 -1 11 -1 -2 4 10

37 -5 3 -2 -21 38 -2 -1 -2 -22 39 -1 3 -2 -2 40 -5 1 2 -14

-5 -3 1 -10 6 1 -2 15 -2 -3 3 -10 2 2 -3 2

6 -1 4 34 -2 -3 4 7 -2 -3 -5 -50 4 -1 5 28

41 -5 -5 3 -2 42 3 5 1 33 43 3 -1 -3 -5 44 -2 4 -3 -2

-5 -1 6 5 6 -2 6 50 -1 -2 3 0 -1 -5 3 -13

-3 -3 -5 -52 -2 -1 -3 -23 2 -3 3 13 -3 -5 -1 -39

45 6 4 4 64 46 -3 -1 4 -8 47 6 6 3 51 48 -1 -5 -5 -45

6 1 -3 20 4 -3 2 20 5 -3 -2 18 6 -5 6 56

3 1 1 21 1 -5 -5 -20 5 4 -2 32 -5 5 5 5