Сосудистая система сетчатки

Сетчатка выделяется исключительно высо­кой интенсивностью поглощения кислорода на единицу массы среди тканей. Отличается кро­воснабжение сетчатки и тем, что при этом за­действованы две системы кровообращения. Первая система состоит из собственных сосу­дов сетчатки, а вторая система — это сосуды хориоидеи (рис. 3.6.51). В последнем случае обеспечение кислородом и метаболитами сет­чатки происходит путем их диффузии через мембрану Бруха и клетки пигментного эпите­лия. Необходимо подчеркнуть то, что путем диффузии из увеального тракта происходит обеспечение только наружной трети сетчатки [154]. Подобный тип кровоснабжения устано­вился еще в эмбриональном периоде развития глаза и обусловлен особенностями функциони­рования фоторецепторов [184].


щаются в артериолы, а затем и в капилляры (рис. 3.6.52; 3.6.53, см. цв. вкл.; 3.6.54, 3.6.55). Примерно у 25% людей сосуды сетчатки исхо­дят непосредственно из сосудистой системы хо­риоидеи. Соединение двух систем происходит с темпоральной стороны диска зрительного нерва (цилиоретинальная артерия). Эта артерия обес­печивает кровоснабжение большей части жел­того пятна и папилло-макулярного пучка.

Закрытие просвета центральной артерии сетчатки в результате различных патологичес­ких процессов (атеросклеротические измене-


 


Рис. 3.6.51. Флюоресцентная ангиография сосудов сет­чатой оболочки:

четко виден характер распределения артерий и вен различного калибра

Собственные сосуды сетчатки являются вет­вями центральной артерии сетчатки. Централь­ная артерия сетчатки лежит с назальной сторо­ны относительно центральной вены сетчатки. При вхождении в сетчатую оболочку артерия и вена подразделяются на четыре главные вет­ви: верхнюю и нижнюю назальные и верхнюю и нижнюю темпоральные. Затем артерии ди­хотомически делятся, отходя от основного ство­ла под прямым углом, и постепенно превра-


Рис. 3.6.52. Сосудистая система сетчатой оболочки

между диском зрительного нерва и областью желтого

пятна:


4 -^-vf^*

отмечается древовидное ветвление артерий до образования ка­пиллярной сети вокруг центральной ямки. Сетчатка обработана протеолитическими ферментами

Рис. 3.6.54. Обработанная трипсином сетчатая оболоч­ка. Взаимоотношение артериальных и венозных со­судов различного калибра (по Hogan et al., 1971):

а — артерия сетчатки (/) с наружным циркулярно расположен­ным слоем мышечных волокон. Из артерии выходит артериола (2), переходящая в капилляры (3); б — капиллярное ложе пери­ферии сетчатой оболочки



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


Рис. 3.6.55. Сканирующая электронограмма сосудис­того ложа сетчатой оболочки:

на левой электронограмме виден артерио-венозный перекрест и сеть капилляров. Просматриваются также хориокапилляры сосу­дистой оболочки. На правой электронограмме четко определя­ется артериола, участвующая в формировании капиллярной сети

ния, гигантоклеточный артериит) у людей, име­ющих хориоретинальную артерию, приводит к незначительному снижению зрения. Наоборот, эмболия цилиоретинального сосуда существен­но нарушает центральное зрение, сохраняя пе­риферическое.

Сосуды сетчатки заканчиваются нежными сосудистыми дугами на расстоянии 1 мм от зубчатой линии. Артериальная система сетчат­ки относится к истинным терминальным сис­темам, поскольку не существует анастомозов между артериями сетчатки, а также между ар­териями сетчатки и другими системами крово­обращения. Нет также и артериовенозных ана­стомозов. Каждая ветвь центральной артерии сетчатки кровоснабжает определенный квад­рант. В результате этого при прекращении кро­вообращения в одной из артериальных ветвей развивается инфаркт только соответствующего квадранта сетчатки.

Диаметр артерий вблизи диска зрительно­го нерва равен 0,1 мм, а толщина стенки — 18 мкм [154, 184]. Все крупные ветви централь­ной артерии сетчатки относятся к артериям малого калибра. Вблизи диска зрительного не­рва их стенка содержит 5—7 слоев гладкомы-шечных клеток, а на периферии — 2—3. Эндо-телиальная выстилка имеет обычное строение и обладает базальной мембраной. В артериях сет­чатки не выявляется внутренней эластической мембраны. Адвентиция состоит из различного количества циркулярно расположенных колла-геновых волокон. Между адвентицией и окру­жающими аксонами ганглиозных клеток распо­лагаются базальные мембраны глиальных кле­ток и клеток Мюллера.


Артериолы меньшего размера, чем артерии. Диаметр их порядка 8—15 мкм [154, 184, 492— 495]. Эти сосуды распределяются вблизи внут­ренней пограничной мембраны или недалеко от нее, в основном отражая картину расположе­ния нервных волокон. В местах приближения сосудов к поверхности внутренняя погранич­ная мембрана истончается. Истончение внут­ренней пограничной мембраны сетчатки опреде­ляется также вдоль патологически измененных сосудов крупного калибра.

Артериолы лежат в основном над соответ­ствующими венулами. Поскольку стенки обоих типов сосудов в норме просвечиваются, клини­чески видны столбики светлой крови (окислен­ной в артериях) над столбиками темной крови, протекающей в венулах. С возрастом и при некоторых заболеваниях, ускоряющих процес­сы старения (диабет, гипертония, артериоскле­роз), стенки артериол утолщаются и при этом исчезают столбики венозной крови.

Как и в артериях, стенка артериол содержит гладкомышечные клетки. При этом базальная мембрана эндотелиальных клеток срастается с базальной мембраной мышечных клеток. Меж­ду гладкими мышцами и окружающей глией лежит узкая полоска коллагеновой ткани.

Капилляры. Капилляры распространяются на протяжении всей сетчатки в виде густой сети, подвешенной между артериолами и ве­нулами. Относительно широкая свободная от капилляров зона видна вдоль артериол и венул, а также в области центральной ямки диамет­ром 0,5 мм.

Капилляры распространяются в ткани сет­чатки только от слоя ганглиозных клеток до внутреннего ядерного слоя. Их нет в наруж­ном плексиформном и наружном ядерном сло­ях. Использование тотальных препаратов сет­чатки выявило двуслойность распределения капилляров, особенно по периферии сетчатки [273, 184]. При этом поверхностная капилляр­ная сеть утолщается параллельно утолщению слоя нервных волокон [529]. Именно в связи с этим наиболее толстый капиллярный слой обнаруживается перипапиллярно.

Капилляры сетчатки имеют особую струк­турную организацию.

В первую очередь необходимо указать на наличие большого количества перицитов (рис. 3.6.56). Соотношение перицитов и эндо­телиальных клеток равно 1:1. Перициты при­легают к базальной мембране эндотелиоцитов [154, 184, 630]. Окружены они собственной ба­зальной мембраной, срастающейся с базальной мембраной эндотелиоцитов. В результате этого перицит как бы заключен в футляр. Потеря связи перицитов с эндотелиальными клетками капилляров сетчатки — один из первых патоге­нетически существенных признаков развиваю­щегося сахарного диабета. Базальная мембра­на перицитов также прикрепляется к клеткам


Сетчатка



 


Рис. 3.6.56. Электроннограмма стенки капиллярного сосуда сетчатой оболочки:

снаружи эндотелиальной выстилки сосуда (/) располагается перицит (2), окруженный базальной мембраной

Мюллера, а при наличии сосудов большого ка­либра и к соединительнотканной строме сосуда.

При ишемических ретинопатиях, типа са­харного диабета, полицитемии, макроглобулин-эмии, перициты некротизируются. Это приво­дит к ослаблению стенки сосуда и образованию микроаневризм [200].

Отличительной особенностью эндотелиоци-тов является и то, что они соединяются между собой при помощи сложной системы межкле­точных контактов. С апикальной стороны они скрепляются «запирающими пластинками», а между телами клеток видны многочисленные «пальцевые вдавления».

В просвет сосуда клетки отдают многочис­ленные микроворсинки, а их цитоплазма выпол­нена пузырьками, что указывает на интенсив­ный пиноцитоз. Наиболее важным отличием эндотелиальной выстилки капилляров сетчатки является отсутствие «фенестр». Именно эта особенность строения объясняет отсутствие распространения высокомолекулярных веществ из кровяного русла в сетчатку по межклеточ­ным пространствам. Наличие плотных контак­тов между клетками и отсутствие «фенестр» обеспечивает функционирование гемашо-рети-нального барьера.

Система регуляции кровенаполнения сосу­дов сетчатки отличается от регуляции крово­снабжения других органов и тканей. Крово­обращение сетчатки ауторегулируется. В этой связи уместно напомнить, что сетчатка, в отли­чие от сосудистой оболочки, не содержит сим­патических нервных волокон. Вегетативные во­локна распространяются по ходу глазничной артерии только до решетчатой пластинки [638, 639]. Поддержание постоянного внутрисосудис-того давления осуществляется только местыми механизмами. Тем не менее некоторыми авто­рами показано наличие адренэргических окон­чаний на артриях сетчатки [249, 331]. Подтвер-


ждают возможность вегетативной иннервации и изменения кровотока в сетчатке при использо­вании адренэргических антагонистов [184, 313, 1006].Эффекторным органом ауторегуляции кровообращения в сетчатке являются гладкие мышцы артерий и артериол. Тонус сосудов и контролирует давление, скорость кровотока и, естественно, уровень насыщения тканей кис­лородом. Запускается механизм авторегуляции даже при небольшом падении насыщения тка­ней кислородом и повышении рН. При повы­шении рН происходит первоначальное расшире­ние просвета сосуда, а затем быстрое сужение, приводящее к ускорению кровотока [296].

Вены.Просвет вен сетчатки выстлан эндо-телиальными клетками. Под эндотелием распо­лагается соединительнотканный слой, содер­жащий эластические волокна и гладкомышеч-ные клетки. Снаружи вены окружены адвен-тициальным соединительнотканным слоем. Все вены от нейральной ткани отделены тонким слоем глиальных клеток, отдающих многочис­ленные цитоплазматические отростки, вплета­ющиеся в адвентицию сосудов (рис. 3.6.57).

Рис. 3.6.57. Ветвь центральной вены сетчатой оболочки (по Hogan et al., 1971):

в просвете сосуда определяются эритроциты (справа). К эндо-телиальным клеткам (/) прилежит мышечный слой (2). Между эндотелиальными и мышечными клетками лежит базальная мем­брана (стрелки). Снаружи мышечного слоя располагается адвентиция (3), к которой прилежат отростки мюллеровских клеток (4)



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


В пределах зрительного нерва вены окруже­ны не глиальными элементами, а соединитель­ной тканью оболочек нерва. Диаметр вен в раз­личных участках различен. Так, в области дис­ка зрительного нерва он равняется 150 мкм, а в области экватора только 20 мкм [154, 184,492—495].

Уменьшение диаметра сосудов сопровожда­ется исчезновением гладкомышечных клеток, которые заменяются перицитами. Благодаря на­личию большого количества перицитов веноз­ная стенка обладает довольно высокой эластич­ностью. В связи с этим просвет вены может существенно изменяться в зависимости от из­менения реологических свойств протекающей крови. У больных сахарным диабетом или забо­леваниями наружной сонной артерии, сопро­вождающимися уменьшением скорости движе­ния крови, вены существенно колбасовидно расширяются. Аналогичные изменения отмеча­ются и в венах сетчатки при отеке диска зри­тельного нерва или развитии в глазнице объем­ных процессов, сопровождающихся увеличе­нием венозного давления.

Центральная вена сетчатки является основ­ной веной, обеспечивающей отток крови от сет­чатой оболочки.

В области диска зрительного нерва сущест­вуют анастомозы между венозными системами сетчатки и сосудистой оболочки. Это так на­зываемые цилиоретинальные вены [534],т. е. вены, соединяющие вены сосудистой оболочки и сетчатки. Обнаруживаются они довольно ред­ко. Jackson [534] выявил только в двух случаях эти вены при исследовании 1000 глаз.

На протяжении многих лет исследователи обсуждают вопрос и о наличии анастомозов между венами сетчатки и мягкой мозговой оболочки зрительного нерва — ретинопиальных вен. Эти вены отводят кровь от сетчатки непо­средственно в венозную систему зрительного нерва без предварительного соединения с цен­тральной веной сетчатки. Ряд исследователей предполагают, что подобные анастомозы разви­ваются только в результате развития объемно­го процесса в глазнице, например менингиомы [898, 1221]. Ruskell [939] на основании соб­ственных исследований предполагает сущест­вование подобных вен как вариант строения венозной системы сетчатки. По его мнению, возможность такой связи определяется особен­ностями развития кровеносной системы этой области в эмбриогенезе [465, 690]. На ранних этапах эмбриогенеза существует две независи­мые системы венозного кровообращения, кото­рые связаны с будущей центральной веной сет­чатки. На поздних этапах эмбриогенеза одна из систем обычно подвергается обратному разви­тию. В случаях обнаружения ретинопиальных сосудов подобного обратного развития одной из систем эмбриональной венозной системы не происходит.


В настоящее время показано, что наличие вышеприведенных анастомозов (ретинопиаль-ные вены, цилиоретинальные вены) в опреде­ленной степени предотвращает развитие тяже­лых функциональных нарушений при окклюзии центральной вены сетчатки [155, 652, 468].

Довольно высокая вероятность развития на­рушения оттока венозной крови по централь­ной вене сетчатки связана с рядом причин. Од­ной из таких причин рассматривают близкое прилегание центральной вены сетчатки к цент­ральной артерии в области диска зрительного нерва. Чаще окклюзия развивается при пере­крещивании артерии и вены [311]. В местах перекрещивания сосудов адвентиция артерии сливается с глиальной оболочкой вены, а иног­да их разделяет лишь слой эндотелиальных клеток и базальная мембрана. Поскольку стен­ка артерии подвержена атеросклеротическим изменениям, просвет вены в таких случаях до­вольно легко облитерируется. Клиническими исследованиями выявлено, что перекрещивание артерии и вены чаще обнаруживается в верх­невисочном секторе. Именно по этой причине в 99% окклюзия вены происходит именно в этой зоне.

По мере уменьшения калибра вен они пре­вращаются в венулы. Стенка венулы сущест­венно отличается от стенки вены. В венулах стенка столь истончена, что ядра эндотелиаль­ных клеток выстоят в просвет сосудов. Преры­вается венозная система в 1,5 мм позади зуб­чатой линии.

Гемато-ретинальный барьер

Описывая кровеносную систему сетчатки, нельзя обойти вниманием такое важное в функ­циональном отношении понятие, как гемато-ре­тинальный барьер. Довольно давно было пока­зано, что в центральную нервную систему из плазмы крови поступают далеко не все веще­ства, поскольку существует барьер (гематоэн-цефалический). Этот барьер обеспечивает, од­новременно с механизмами активного и пас­сивного транспорта, поддержание гомеостаза в нервной системе, обеспечивая тем самым оптимальную среду для функционирования ней­ронов. Подобная ситуация складывается и в отношении глазного яблока, т. е. существует гемато-офтальмический барьер [31].

Понятие гемато-офтальмического барьера включает в себя особую структурно-функцио­нальную организацию тканевых и клеточных образований органа зрения, обеспечивающих и поддерживающих состояние гомеостаза структур глаза и определяющих, в значитель­ной мере, особенности типов патологических реакций (аномалии развития, воспалительная реакция, дистрофия, явления регенерации, опухолевый процесс, дисциркуляторные рас­стройства и др.).


Сетчатка



 


В глазном яблоке существуют две основные барьерные системы [91, 184]:

1-й барьер: кровь — внутриглазная жидкость. Состоит этот барьер из различных структур ресничного тела (базальная мембрана пигмент­ного эпителия и межклеточные контакты кле­ток пигментного эпителия). Эта система регули­рует и определяет характер взаимоотношений между кровью и внутриглазной жидкостью. При этом основное движение метаболитов направле­но из крови в глаз.

2-й барьер: кровь — сетчатка (гемато-рети-нальный барьер). Этот барьер отличается осо­бой «жесткостью» в отношении многочислен­ных веществ. Именно этот барьер обеспечивает гомеостаз сенсорной части сетчатой оболочки.

Помимо приведенных выше двух систем, су­ществуют также системы, обеспечивающие го­меостаз стекловидного тела, внутрисклераль-ной части зрительного нерва и папиллярной области, роговой оболочки (расположенный на уровне перилимбального сосудистого спле­тения). Не исключается возможность наличия барьерных образований на уровне хориокапил-лярного слоя увеального тракта глаза, сосу­дов радужки. Перечисленные барьеры не име­ют столь четкой морфологической основы, как гемато-ретинальный барьер.

Вполне обоснована возможность выделения ликворотканевых барьеров. К ним относятся: ликворотканевой барьер роговой оболочки (дес-цеметова оболочка — задний эпителий рогови­цы), ликворотканевой барьер хрусталика (кап­сула хрусталика и его эпителий), ликвороткане­вой барьер стекловидного тела (внутриглазная жидкость — стекловидное тело). Дренажная сис­тема также обладает барьерными функциями.

О некоторых из перечисленных барьеров мы упоминали выше, при освещении строения и функции той или иной структуры. В настоящем разделе мы более подробно остановимся только на гемато-ретинальном барьере.

Основным структурным элементом барьера кровь — сетчатка являются кровеносные сосу­ды сетчатки. В 1966 г. Shakib и Cuncha-Vaz [996] показали, что соединения между эндоте-лиальными клетками кровеносных сосудов сет­чатки отличаются наличием «запирающих плас­тинок» (zonula occludens), которые как бы «за­печатывают» межклеточное пространство. Этот тип межклеточных контактов обеспечивает от­сутствие так называемых «фенестр», свойст­венных сосудам увеального тракта (рис. 3.6.58). Экспериментальные исследования показали, что после производства парацентеза или при введении в организм животного гистамина юнкциональный комплекс сосудов сетчатки оказывался закрытым. При этом прохождение частиц трейсера блокировалось эндотелиальны-ми клетками. Напротив, в сосудах радужной оболочки аналогичные воздействия на глазное яблоко вызывали открытие межклеточных про-


Рис. 3.6.58. Структурные различия между капиллярны­ми сосудами сосудистой (слева) и сетчатой (справа) оболочек глаза:

в хориокапиллярах определяются «фенестры» (стрелки). Отсут­ствие «фенестр» в капиллярах сетчатой оболочки обеспечивает функционирование гемато-ретинального барьера

странств, и частицы трейсера поникали в меж­клеточные пространства и далее в строму ра­дужки. Подобные исследования были проведе­ны с использованием в качестве трейсеров та­ких веществ, как диоксид тория, трипановый голубой, флюоресцеин. На основании проведен­ных исследований Cuncha-Vaz пришел к вы­воду, что барьер кровь — сетчатка обеспечи­вается особым типом межклеточных контактов эндотелиальных клеток.

Последующие исследования с применением других трейсеров типа пероксидазы хрена, декстранов подтвердили предположение Cun­cha-Vaz. Плотные контакты оказались наиболее прочными. Именно они были способны блоки­ровать движение макромолекул между эндо-телиальными клетками из просвета в интер-стициальные ткани и наоборот.

Плотные соединения распределяются зако­номерным образом вдоль цитоплазматической мембраны эндотелиоцита. Необходимо отме­тить, что эндотелиоциты сосудов сетчатой обо­лочки, в связи с особенностями выполняемой ими функции, отличаются не только структур­но, но и гистохимически. В них определяется исключительно высокая активность щелочной фосфатазы, практически не обнаруживаемой в эндотелиоцитах сосудов других тканей.

Гомеостаз наружной части сетчатки обеспе­чивает и другая барьерная система. Это комп­лекс структур, к которым можно отнести хо-риокапилляры сосудистой оболочки, мембрану Бруха и пигментный эпителий сетчатки.

Если стенка хорикапилляров не является препятствием для проникновения макромоле­кул, то мембрана Бруха большие молекулы не пропускает. Не проникают через нее перокси-даза хрена и ферритин. Усиливают барьерные свойства мембаны Бруха клетки пигментного эпителия. Показано, что если такие трейсеры, как трипановый синий и флюоресцеин, прони­кают через мембрану Бруха, то через клетки пигментного эпителия они уже проникнуть не могут.



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


Столь низкая пропускная способность пиг­ментного эпителия обеспечивается характером контактов между эпителиоцитами. Ультра-структурно выявлено, что между клетками пиг­ментного эпителия существуют межклеточные контакты, напоминающие контакты между эн-дотелиоцитами сосудов сетчатки (плотные кон­такты, запирающие пластинки).

Таким образом, основными структурами, обеспечивающими функцию барьера кровь — сетчатка для внутренней 2/3 толщины сетчатки, являются эндотелиальные клетки. Для наруж­ной Уз толщины сетчатки такими образования­ми являются хориокапилляры сосудистой обо­лочки, мембрана Бруха и пигментный эпителий сетчатки.

Гемато-ретинальный барьер привлек еще большее внимание после создания прибора, позволяющего прижизненно и количественно определить степень нарушения барьерных функций у животных и человека, а именно флюоротрона. Этот прибор позволил в доволь­но короткие сроки выяснить, что гемато-ре­тинальный барьер нарушается при многих за­болеваниях глаза. Так, при травме глаза (кон-тузионная, проникающая, химическая травмы, воздействие лазерным излучением и пр.) гема­то-ретинальный и гемато-ликворный барьеры нарушаются уже на первых этапах посттрав­матического процесса, что является важным патогенетическим элементом в развитии вос­палительных изменений и формирования внут­риглазных шварт [9, 485, 846, 1114, 1167, 1168].

Считают также, что нарушение гемато-рети-нального барьера является важным патогенети­ческим моментом в развитии макулярного оте­ка, патологии глаза при сахарном диабете, гла­укоме, окклюзии центральной вены сетчатки, увейте, пигментном ретините и др.

Центральная роль нарушения гемато-рети-нального барьера в развитии заболеваний раз­личной этиологии определяется тем, что при нарушении барьера глазное яблоко уже не яв­ляется забарьерным органом. В этом случае, в него поступают токсические метаболиты, био­логически активные вещества, иммуноглобули­ны и т. п. И, наборот, из глазного яблока в кровяное русло попадают антигены структур глазного яблока, приводящие к аутосенсибили-зации организма (белки хрусталика, сетчатой оболочки и др.). Именно изменение характера взаимоотношения между глазом и целостным организмом при нарушении барьеров предопре­деляет возможность возникновения и дальней­шего развития различных патологических про­цессов.

Столь важное значение барьеров в функци­онировании глаза поставило перед исследовате­лями задачу разработки методов влияния на их функции в норме и патологии. Выявлены препа­раты, нарушающие и стабилизирующие барьер-


ные функции, часть которых возможно приме­нять в клинике.

3.6.10. Регенерация сетчатки

Останавливаясь на вопросах регенерации сетчатой оболочки, необходимо еще раз напом­нить о том, что репаративной регенерации сет­чатки не происходит. Как и в центральной не­рвной системе, отмечается лишь заместитель­ная регенерация.

В отличие от регенерации других структур глаза (роговица, склера, радужная оболочка и др.) основную роль в заместительной регенера­ции сетчатки играют глиальные элементы (аст-роциты, олигодендроциты, микроглия). Именно их размножение, последующая дифференциа­ция и синтез волокнистого компонента при­водят к формированию глиального рубца сет­чатки. В нейронах отмечаются лишь признаки внутриклеточной регенерации, не приводящей к восстановлению их функции.

Заместительная регенерация сетчатки может носить и патологический характер. При этом отмечается избыточное размножение глиальных элементов сетчатки, а также пролиферация со­единительнотканных элементов. В результате такого процесса возможно образование тяжей в стекловидном теле, которые могут привести в результате тракции к отслойке сетчатки.

На протяжении многих десятилетий про­водятся попытки стимулировать репаративную регенерацию нервной ткани, включая сетчатую оболочку, различными способами. Наибольшее число работ посвящено эффективности транс­плантации эмбриональной нервной ткани (сет­чатки). Пока эти исследования находятся на стадии экспериментальных разработок. Более подробно можно ознакомиться с решением про­блем регенерации сетчатой оболочки в разделе «Регенерация зрительного нерва».

3.7. ЗРИТЕЛЬНЫЙ НЕРВ

Аксоны ганглиозных клеток сетчатки объе­диняются и выходят из глаза, образуя зритель­ный нерв (II черепно-мозговой нерв, п. opti-cus). Таким образом, зрительный нерв, являет­ся лишь частью зрительного пути.

Хотя зрительный нерв и называется нервом, к нервам периферической нервной системы он никакого отношения не имеет. Тем не менее необходимо отметить, что существующие раз­личия в строении периферического нерва и зри­тельного нерва относительны. Периферические нервы окружены слоем шванновских клеток, синтезирующих миелин. В зрительном нерве, так же, как и в белом веществе головного моз­га, аксоны ганглиозных клеток покрыты двой­ным слоем плазмолеммы олигодендроцитов,


Зрительный нерв



 


также синтезирующих миелиновую оболочку. Как в зрительном нерве, так и периферических нервах видны участки прерывания миелиновой оболочки, называемые перехватами Ранвье.

Различают несколько анатомических частей зрительного нерва (рис. 3.7.1):

1) внутриглазная часть и диск зрительного
нерва;

2) внутриглазничная;

3) внутриканальцевая;

4) внутричерепная.


ки, проникающие в паренхиму и разделяю­щие аксоны ганглиозных клеток сетчатки на 800—1200 пучков. Число волокон колеблется от 1 060 000—1 130 000 [616] до 1 190 000 [811]. Каждый аксон ограничен плазматической мемб­раной, к которой прилежит прослойка, состоя­щая из олигодендроцитов. На продольном срезе ядра глиальных клеток располагаются в виде рядов, простирающихся вдоль аксонов. Основ­ной функцией глиальных клеток является син­тез миелина. В отличие от шванновских клеток


 



 


Рис. 3.7.1. Топография зрительного нерва (по Hogan, Zimmerman, 1966):

1 — интрасклеральная часть зрительного нерва; 2 — внутриглазничная; 3 — внутриканальцевая; 4 — внутричерепная; 5 — зритель­ный перекрест (хиазма)


периферических не приводит к глиальной труб не происходит лиозных клеток ли считают, что

Длина зрительного нерва от заднего полюса глазного яблока до зрительного перекреста (хи­азмы), где зрительный нерв завершает свой путь, равняется примерно 50 мм. Глазничная часть его при этом равна 24 мм. Расстояние от заднего полюса глаза до вхождения в зри­тельный канал равно всего 18 мм [1163]. Эти 6 мм разницы являются следствием хода нерва в глазнице по кривой, выпуклая поверхность которой обращена вниз и кнаружи. Наличие та­кого извилистого хода и обеспечивает подвиж­ность глаза.

Внутриглазной участок зрительного нерва наиболее короткий (0,7—1,0 мм). Часть нерва в зрительном канале имеет длину 9 мм. У вер­шины глазницы, т. е. в месте его вхождения в зрительный канал, зрительный нерв окружен сухожилиями мышц глаза, образующих кольцо (цинново кольцо).

Микроскопическое строение

На поперечном срезе зрительного нерва (рис. 3.7.2) видно, что от мягкой мозговой обо­лочки, окружающей нерв, отделяются много­численные соединительнотканные перегород-


 

S'W-


нервов, разрушение глиоцитов образованию регенерационной ки. Именно по этой причине и регенерации аксонов ганг-сетчатки. Многие исследовате-основной причиной неудач при

Рис. 3.7.2. Поперечный разрез зрительного нерва;

четко определяется формирование колонок, состоящих из ак­сонов ганглиозных клеток, окруженных глиальными клетками. В центре располагается центральная артерия (/) и вена (2) сетчатки



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


пересадке ткани зрительного нерва является именно это свойство глиоцитов. После импрег­нации препаратов солями тяжелых металлов четко выявляется, что аксоны на своем про­тяжении имеют перехваты Ранвье, по строению аналогичные образованиям, обнаруживаемым в центральной нервной системе.

Цитоплазма аксонов насыщена микротрубоч­ками диаметром 20—25 нм, ориентированны­ми вдоль волокна, тонкими микрофиламентами (6—7 нм), митохондриями и профилями глад­кого эндоплазматического ретикулума [69, 154].

Приведенные выше особенности строения зрительного нерва закладываются еще внутри­утробно. На 4-м месяце эмбрионального раз­вития зрительный нерв окружен глией, погру­жающейся в паренхиму нерва в виде так на­зываемых септ (перегородок). 6—9 толстых «первичных» перегородок, разделяют нерв на сектора. Между ними распространяются более тонкие «вторичные» перегородки. «Вторичные» перегородки неоднократно разделяются и делят аксоны на пучки. У человека межсептальные пространства имеют круглую форму, а у млеко­питающих — полигональную.

По ходу перегородок в зрительный нерв по­ступают кровеносные сосуды. Каждая септа со­держит одну артерию, окруженную коллагено-выми волокнами. Проникая в нерв, кровенос­ные сосуды дихотомически делятся, анастомо-зируя между собой. Между пучками аксонов распространяются так называемые передне-задние септальные сосуды. Эти кровеносные сосуды анастомозируют с ветвями, ориентиро­ванными поперечно зрительному нерву. В ре­зультате вокруг каждого пучка аксонов образу­ется сосудистое сплетение. Перегородки окру­жают пучки аксонов подобно трубкам. В стен­ках «трубок» имеются «окна», через которые в соседние пучки аксонов проникают сосуды.


На продольном разрезе видно, что перего­родки внезапно прерываются, и эти места вы­полнены глиальной тканью.

Как указано выше, каждая трабекула в центре содержит сосуд. Кровеносные сосуды,

Рис. 3.7.3. Продольный срез внутриглазничной части зрительного нерва:

видны колонки глиальных клеток (/), окружающие пучки аксо­нов ганглиозных клеток сетчатки (2)


а 6

Рис, 3.7.4. Электроннограмма поперечного среза зрительного нерва:

небольшое увеличение, иллюстрирующее миелинизированные нервные волокна, окруженные отростками астроцитов; б — боль­шое увеличение выявляет слоистую структуру миелиновых оболочек. Отмечается различный диаметр аксонов


Зрительный нерв



 


Рис. 3.7.5. Электроннограмма продольного среза зри­тельного нерва (по Hogan et al., 1971):

1 — отросток цитоплазмы астроцита; 2 — аксоны ганглиозных клеток сетчатки; 3 — микротрубочки отростков астроцитов; 4 — межклеточная граница двух соседних астроцитов; 5 — нейротру-бочки, расположенные в аксоплазме аксонов ганглиозных клеток; 6—нейрофиламенты аксоплазмы аксонов ганглиозных клеток


проходящие в толстых септах, обладают мы­шечным и эластическим слоями. Снаружи они сначала окутаны слоем рыхлой соединительной ткани, а затем и плотной соединительной тка­нью. Наиболее кнаружи лежит слой глиальных клеток (рис. 3.7.3—3.7.6).

Волокна зрительного нерва различного диа­метра (от 0,7 до 10,0 мкм) (рис. 3.7.4). Диаметр приблизительно 92% волокон менее 1 мкм [616, 811]. Тонкие волокна исходят из малень­ких ганглиозных клеток, а толстые — из ганг­лиозных клеток, расположенных по периферии сетчатки. Не выявлено каких-либо ультраструк­турных особенностей строения аксонов различ­ной толщины [69, 202].

3.7.2. Внутриглазная часть и диск зрительного нерва

Внутриглазная часть зрительного нерва (рис. 3.7.7—3.7.9) простирается от стекловид­ного тела до наружной поверхности склеры. В этой области прерываются сосудистая обо­лочка и сетчатка, и зрительный нерв проходит под прямым углом через склеральный канал. Во внутриглазной части зрительного нерва раз­личают следующие зоны:

1. Поверхностный слой нервных волокон
(преламинарная часть), соответствующий уров­
ню расположения мембраны Бруха (pars reti-
nalis).

2. Преламинарная часть, лежащая в плос­
кости сосудистой оболочки (pars choroidalis).


 



 


 


Рис. 3.7.6. Электроннограмма поперечного среза аксо­на зрительного нерва:

/ — аксон; 2 — астроциты; 3 — микротрубочки аксона; 4 — комп­лекс Гольджи астроцита. Аксон окружен двумя астроцитами, цитоплазма которых выполнена большим количеством органои­дов и филаментами. Аксон ганглиозной клетки содержит про­фили гладкого эндоплазматического ретикулума и микротру­бочки


Рис. 3.7.7. Микрофотография внутриглазной части зри­тельного нерва:

/ — ретинальный слой зрительного нерва; 2 — склеральный слой; 3 — скопление глиальной ткани, расположенной на дне физиологической чаши вблизи центральных сосудов сетчатки; 4 — центральная артерия сетчатки; 5 — центральная вена сет­чатки. В нижнем правом углу показан диск зрительного нер­ва при офтальмоскопии и продольный срез зрительного нерва



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА



Рис. 3.7.8. Особенности микроскопичес­кого строения места прерывания сетча­той оболочки вблизи диска зрительного нерва:

/ — пигментный эпителий сетчатки, прилежа­щий непосредственно к диску зрительного не­рва; 2 — наружный ядерный слой сетчатки, рас­полагающийся в этой же области; 3 — внутрен­ний ядерный слой сетчатки исчезает на большем расстоянии от диска; 4— утолщенный слой нерв­ных волокон; 5 — промежуточная ткань Кунта, отделяющая сетчатку и хориоидею от зритель­ного нерва



13

14

11

 


Рис. 3.7.9. Трехмерное изображение внутриглазной и внутриорбитальной частей зрительного нерва (по Anderson,

Hoyt, 1969):


Мюллеровские клетки (1а) распространяются с астроцитами до места прерывания сетчатой оболочки вблизи диска зритель­ного нерва. При этом мюллеровские клетки образуют внутрен­нюю пограничную мембрану Элшинга (16). В некоторых случаях мембрана Элшинга значительно утолщена в центральной части диска зрительного нерва, образуя центральный мениск Кунта (2). В месте прерывания сосудистой оболочки с темпоральной стороны пограничная ткань Элшинга (.?) лежит между астоцита-ми, окружающими канал зрительного нерва (4), и стромой хори-оидеи. С назальной стороны строма хориоидеи непосредственно соседствует с астроцитами, окружающими нерв. Скопление аст-роцитов (4), окружающих канал, называется пограничной тка­нью Якоби. В дальнейшем эта ткань распространяется в место прерывания сетчатой оболочки в виде ткани Кунта (5). Астро-циты (б) разделяют аксоны ганглиозных клеток на 1000 пучков. По мере прохождения через решетчатую пластинку (верхняя пунктирная линия) нервные пучки (7) окружены астроцитами


и соединительной тканью. Постепенно астроциты полностью замещаются соединительной тканью. В формировании соеди­нительной ткани участвует коллагеновая ткань склеры и сосу­дистой оболочки. Определяются эластические волокна. С наруж­ной стороны решетчатой пластинки (нижняя пунктирная ли­ния) наступает миелинизация аксонов зрительного нерва. Меж­ду пучками аксонов располагаются в виде цилиндров скопления олигодендроцитов (черные и белые клетки) и большое количе­ство астроцитов (звездоподобные клетки). Далее пучки рас­пространяются, окруженные соединительной тканью (септы), до зрительного перекреста. Эта соединительная ткань исходит из мягкой мозговой оболочки зрительного нерва и называет­ся септальной тканью. Центральные сосуды сетчатки окруже­ны периваскулярной соединительной тканью; 8 — круг Цинна; 9 — твердая оболочка; 10—паутинная оболочка; // — мягкая оболочка. 12 — сетчатка; 13— хориоидея; 14 — склера; 15 — септа


Зрительный нерв



 


3. Часть зрительного нерва, соответствую­
щая расположению решетчатой пластинки
(pars scleralis).

4. Ретроламинарная часть, лежащая непо­
средственно позади решетчатой пластинки.

Поверхность зрительного нерва, обращен­ная в сторону стекловидного тела, хорошо вид­на офтальмоскопически. Называется это обра­зование диском зрительного нерва. Именно здесь собираются аксоны ганглиозных клеток со всей поверхности сетчатки, которые и об­разуют зрительный нерв (рис. 3.7.8; 3.7.10, см. цв. вкл.).

Аксоны ганглиозных клеток, обеспечиваю­щие центральное зрение, идут прямо от цент­ральной ямки к темпоральной части диска зри­тельного нерва. Таким образом, формируется папилло-макулярный пучок. Аксоны, идущие от ганглиозных клеток, расположенных назаль­но и по периферии сетчатки, проникают в диск с назальной стороны. От периферии темпораль­ной части сетчатки аксоны направляются в вер­хнюю и нижнюю части диска. Нервные волокна с темпоральной стороны и берущие свое начало вблизи горизонтального меридиана направля­ются прямо к диску. Проходя мимо централь-


ной ямки области на расстоянии от нее в 4 мм, волокна затем идут вдоль папилло-макулярного пучка и становятся частью верхнего и нижнего пучков аксонов.

Заболевания сетчатки, диска зрительного нерва и зрительного нерва приводят к нару­шению строения слоя нервных волокон сет­чатки.

Слой нервных волокон диска изнутри по­крыт внутренней пограничной мембраной Элш-нига (Elschnig), состоящей из астроцитов. Эта мембрана постепенно переходит во внутреннюю пограничную мембрану сетчатки (рис. 3.7.9).

Глиальные клетки в этой области редки, но их количество увеличивается по направлению к ретроламинарной части нерва. Астроциты со­ставляют приблизительно 10% всего объема диска нерва [849].

Внутреннюю часть диска зрительного нерва называют физиологической чашей (рис. 3.7.10— 3.7.12). Отделена она от расположенной с ви­сочной стороны перипапиллярной «атрофичес-кой» зоны склеральным кольцом Элшнига.

Строение диска зрительного нерва и физио­логической чаши практически не изменяется с возрастом.


 



\ I

... л.


\Ш.......... VW.... У L/.. .11...



Рис. 3.7.11. Офтальмоскопическая и гистологическая кар­тина (по Hogan et al., 1971):

а — склерального серпа; б — пигментного серпа; в — височного на­правления прохождения зрительного нерва через склеральный ка­нал; г—нижнего косого направления прохождения зрительного нерва через склеральный канал



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 



 


Рис. 3.7.12. Типы физиологической чаши диска зрительного нерва (по Hogan et al., 1971):

а — цилиндрическая чаша; б — темпоральная чаша; в — кубкоподобная чаша


Диск зрителього нерва розового цвета из-за скопления вокруг него многочисленных капил­лярных сосудов. Количество сосудов несколько больше снизу и темпорально, что хорошо видно при применении флюоресцентной ангиографии. Белый цвет физиологической чаши является следствием рассеивания света решетчатой пла­стинкой. Рассеивают свет и аксоны ганглиоз-ных клеток, которые относительно прозрачные, поскольку не обладают миелиновой оболочкой. При уменьшении количества нервных волокон (хроническая глаукома) можно довольно под­робно рассмотреть решетчатую пластинку.

Форма диска обычно овальная, но может быть и круглой (рис. 3.7.10—3.7.12). Диаметр диска, по данным его измерения после энуклеа­ции, равняется 1,67±0,29 мм [930]. Вертикаль­ный диаметр на 9% больше, чем горизонталь­ный. Чаша на 8% более широкая в горизон­тальной плоскости. Это приводит к тому, что слой кольцевой ткани более широкий сверху и снизу.

Площадь диска в норме колеблется от 0,86 мм2 до 5,54 мм2 (в среднем 2,69 ± 0,7 мм2) [548; 930] и примерно соответствует площади внутренней части склерального канала. Разли­чают макро- и микродиски. Площадь макродис­ков больше (>4,09 мм2), а микродисков меньше (<1,29 мм2) [547]. Многими исследователями было показано, что особенности строения дис­ка зрительного нерва, в частности его размер, коррелируют с вероятностью развития некото­рых заболеваний. Так, диски небольшого раз­мера содержат меньшее количество волокон. При этом склеральный канал узкий [546, 852]. В такой ситуации верятность развития ишеми-ческой нейропатии зрительного нерва значи-


тельно выше [100]. При псевдоотеке диска зри­тельного нерва, особенно на фоне высокой ги-перметропии, также обнаруживается исключи­тельно маленький диск.

Предполагают, что при диске небольшого размера более вероятно нарушение ортоградно-го аксоплазматического потока [549], приводя­щее к нарушению метаболизма структур зри­тельного нерва и сетчатки.

Физиологическая чаша также имеет раз­личные размеры, а ее площадь коррелирует с площадью диска. Границы физиологической чаши обычно определяют по контуру «оправы». Другие исследователи при определении границ физиологической чаши используют такой пока­затель, как ее бледность.

Необходимо отметить, что физиологичес­кая чаша отсутствует у трети индивидуумов [548]. Наиболее часто она видна у эмметропов (86%), реже у гиперметропов (34%) и мио-пов (5%) [102]. Физиологическая чаша может быть мелкой (в 23%), средней глубины (в 31%) или глубокой (в 25%) [1179].

В последние годы появилась возможность проводить объемные измерения зрительной чаши. Rohrschneider et al. [921] при помо­щи лазерного офтальмоскопа обнаружил, что средний объем физиологической чаши равен 0,28 мм3, а ее глубина — 0,73 ± 0,59 мм [930]. Площадь чаши может достигать 3,07 мм2.

Ткань, расположенная вне зрительной чаши, называется «нейроретинальной оправой» и со­стоит из аксонов зрительного нерва, вступаю­щих в головку нерва. Площадь «оправы» рав­няется от 0,8 до 4,66 мм2 (1,97 ±0,5 мм2) и кор­релирует с площадью диска [548]. В нижней части диска «оправа» наиболее широкая. Не-


Зрительный нерв



 


сколько уже она сверху. Форма «оправы» опре­деляется особенностями расположения и диа­метром центральной артерии и вены сетчатки. Артерия и вена большего размера лежат снизу и с височной стороны.

При первичной открытоугольной или хро­нической глаукоме происходит прогрессивная потеря ганглиозных клеток. Это приводит к увеличению физиологической чаши, особенно в верхних и нижних частях диска. При этом физиологическая чаша представляет собой уже не горизонтальный, а вертикальный овал. В «оправе» также появляются кровоизлияния, обычно в нижнем или верхнем височном крае.

Отношение физиологической чаши к дис­ку является величиной, которую получают пу­тем сравнения линейных размеров этих образо­ваний, измеренных в одном сечении. Обычно производят измерения в вертикальном или го­ризонтальном сечениях. Поскольку диск овален в вертикальной плоскости, а физиологическая чаша в горизонтальной, это отношение у здоро­вых лиц обычно меньше при измерении в вер­тикальном сечении.

Отношение физиологической чаши к диску зрительного нерва в среднем равняется 0,3. Разница показателя между двумя глазами не превышает 0,1. Если разница превышена на 0,2, то можно предположить наличие у боль­ного глаукомы.

Отношение физиологической чаши к диску при измерении в вертикальной плоскости оф­тальмологи используют с целью диагностики хронической глаукомы. Такая диагностическая возможность появляется в связи с тем, что повреждение сначала затрагивает нижневисоч­ную, а затем и верхневисочную части «опра­вы». Отношение физиологической чаши к диску в вертикальной плоскости, равное 0,4 или ме­нее, свидетельствует об отсутствии глаукомы. Однако необходимо помнить, что это отноше­ние коррелирует с площадью диска. По этой причине при постановке диагноза глаукомы необходимо учитывать и площадь диска. По­скольку диски маленького размера обычно не имеют физиологической чаши, отношение, рав­ное 0,2—0,3, в маленьком диске фактически указывает на начало глаукомы. При большом диске отношение, равное 0,8, является нормой.

С височной стороны диска зрительного нер­ва офтальмоскопически определяется область так называемой «хориоретинальной атрофии». Эта область увеличивается при хронической глаукоме и высокой близорукости. Описаны две зоны «хориоретинальной атрофии». Обе они обычно обнаруживаются в височном крае диска [547, 930]. Они соответствуют более ста­рым терминам хориоидального и склерального полумесяца [496] (рис. 3.7.1, 3.7.12).

Зона альфа располагается несколько кнару­жи и представляет собой зону неравномерной гипо- и гиперпигментации.


По периферии зона альфа граничит с сетчат­кой, а центрально — с зоной бета. Если нет зоны бета, зона альфа граничит со склераль­ным кольцом. Эта зона соответствует «полуме­сяцу хориоидеи», при котором пигментный эпи­телий не простирается до края диска. Иногда обнаруживается узкий интенсивно пигментиро­ванный полумесяц, часто с назальной стороны диска, который назывался раньше «пигментным полумесяцем».

Зона бета прилежит к диску и окружена зоной альфа. Состоит она из хорошо выражен­ной полоски «атрофии» пигментного эпителия и хориокапилляров. Она соответствует термину «склеральный полумесяц», который использо­вался раньше [496]. Зона бета всегда распола­гается ближе к диску зрительного нерва, чем зона альфа. В норме зона альфа значительно больше зоны бета и встречается чаще.

Необходимо указать на то, что площадь дис­ка зрительного нерва, склеральная кольцевая и парапапиллярная атрофическая зоны коррели­руют с размером слепого пятна и зоной альфа [546, 547, 930]. Размер этой зоны увеличивает­ся при хронической и при первичной открыто-угольной глаукоме (0,65 ± 0,49 мм2, а в норме 0,4 ±0,32 мм2). При глаукоме площадь зоны бета равна в среднем 0,79 ± 1,17мм2, а в норме 0,13 + 0,42 мм2.

Прелиминарная часть зрительного нерваорганизована таким образом, что пучки аксонов ганглиозных клеток сетчатки окружены фиб­розными астроцитами.

Отростки астроцитов распространяются от тела клетки под прямым углом относительно хода нерва. Поскольку глиальная ткань не свя­зывает пучки аксонов, волокна нерва легко от­деляются друг от друга. Этим можно объяснить быстро развивающийся отек диска зрительного нерва. При этом отсутствует отек сетчатки.

Между пучками аксонов лежат капилляры, большинство которых окружены узкими про­слойками нежной соединительной ткани [65, 930]. Обнаруживается и пограничная мембра­на, сформированная отростками глиальных кле­ток [467].

Отростки астроцитов образуют «корзинки», оплетающие аксоны. Помимо механической функции, они выполняют защитную и трофи­ческую функции.

Сеть отростков астроцитов плотно связана с решетчатой пластинкой.

Как и в других частях центральной нервной системы, нейроэктодермальные производные зрительного нерва всегда отделены от соедини­тельной ткани глиальными клетками [70, 930]. Исключением являются немиелинизированные волокна, располагающиеся в пределах адвен-тиции центральной артерии сетчатки на уров­не внутриглазничной части зрительного нерва [930]. Таким образом, по периферии прелами-нарной части зрительного нерва аксоны отделе-



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


ны от соединительной ткани склеры и сосудис­той оболочки манжеткой, состоящей из астро-цитов. Названа эта ткань пограничной тканью Джакоби (Jacoby). Простирается она вперед между аксонами преламинарной части зритель­ного нерва и на область прерывания задних слоев сетчатой оболочки (промежуточная ткань Кунта (Kuhnt)). Видна она в виде скопления ядер и волокон, изгибающихся вокруг края дис­ка зрительного нерва перед вхождением аксо­нов в зрительный нерв.

Место прерывания склеры в области скле­рального отверстия называется пограничной тканью Элшнига (Elschnig). Состоит она из плотной коллагеновой ткани с многочисленны­ми глиальными и эластическими волокнами. Иногда она пигментирована [959].

Определенные структурные особенности имеет участок зрительного нерва, располагаю­щийся на уровне решетчатой пластинки. Перво­начально необходимо остановиться на строении решетчатой пластинки.

Решетчатая пластинка склеры (lamina cribrose sclerae) представляет собой соедини­тельную ткань, коллагеновые пучки которой ориентированы поперек склерального канала (рис. 3.7.13). Через эту решетчатоподобную ткань и проходят аксоны, а также центральная артерия сетчатки.

Строение решетчатой пластинки определя­ется особенностями эмбрионального развития этой области. Каждая соединительнотканная трабекула решетчатой пластинки соответствует месту врастания в нерв коротких ресничных артерий и артерий круга Цинна—Халлера (Zinn—Haller), сопровождаемых глиальными клетками и склеральной соединительной тка­нью. Именно по этой причине, каждая трабеку­ла содержит сосуд, окруженный пучками кол-лагеновых и эластических волокон.

Коллаген относится к типам I, III и IV [930]. С внешней стороны прилегают глиальные клет­ки, которые отделяют пучки аксонов от прямо­го контакта со склерой [70].

Площадь решетчатой пластинки равняется 2,88 ±0,84 мм2 (от 1,62 до 5,62 мм2). В верти­кальной плоскости пластинка более длинная. Ее максимальный диаметр на 14% больше, чем минимальный.

Количество «пор» на внутренней поверхнос­ти пластинки составляет в среднем 227,0±36,0. Средний размер одной «поры» равняется 0,00387 ±0,00091 мм2. Площадь «пор» больше сверху и снизу.

Большая часть решетчатой пластинки состо­ит из 3—10 слоев плотной соединительной тка­ни, смешивающейся по периферии со склерой. Коллагеновые пластины чередуются с глиаль­ными. Передняя часть решетчатой пластинки состоит из астроцитов.

Отверстия, через которые проходят пучки аксонов, имеют различный диаметр. Наиболь-


Рис. 3.7.13. Сканирующая электронная микроскопия:

а — решетчатая пластинка. Видны отверстия, через которые проходят аксоны ганглиозных клеток сетчатки. Формируют от­верстия соединительнотканные тяжи, ориентированные в плос­кости склеры; б—продольный срез через диск зрительного нерва. Видны глиальные и соединительнотканные тяжи, окружа­ющие аксоны ганглиозных клеток

ший диаметр отверстий обнаруживается в верх­них и нижних отделах решетчатой пластинки. Именно в этих местах менее всего обеспечи­вается структурная поддержка аксонов ганг­лиозных клеток сетчатки [850, 851].

Необходимо подчеркнуть, что соотношение глиального и соединительнотканного компонен­тов решетчатой пластинки у различных индиви­дуумов определяет направление и интенсив­ность развития экскавации диска зрительного нерва при хронической глаукоме [849—853, 1136].

Решетчатая пластинка имеет своеобразную ультраструктурную организацию. Каждая плас­тинка в центре содержит эластическое волок­но, покрытое коллагеновыми волокнами, содер­жащими коллаген III типа. Несколько кнаружи располагаются коллагеновые волокна, состоя­щие из коллагена IV типа и ламинина [480]. В астроцитах, располагающихся вокруг пучков аксонов, в мягкой мозговой оболочке и стен­ках кровеносных сосудов выявлена матричная РНК, обеспечивающая синтез коллагена IV ти-


Зрительный нерв



 


па. Матричная РНК коллагена I и III типов обнаруживается в цитоплазме астроцитов толь­ко у взрослых [154, 477].

С возрастом отмечается ряд структурных и биохимических изменений решетчатой пластин­ки, что, по мнению многих авторов, способству­ет развитию поражения зрительного нерва при глаукоме. Отмечено, что с возрастом эластичес­кие волокна утолщаются и увеличивается ко­личество коллагена I, II и III типов [50, 476, 479]. Изменяется состав и межклеточного мат-рикса [51, 479], а также функциональная актив­ность астроцитов [586]. Все эти изменения, по мнению Albona et al. [50], приводят к уменьше­нию эластичности решетчатой пластинки и уве­личению ее жесткости.

Необходимо отметить, что не все аксоны ганглиозных клеток сетчатки, собравшись в об­ласти диска зрительного нерва, проходят через решетчатую пластинку, строго сохраняя рети-нотопический принцип. Описана так называе­мая девиация (отклонение) части нервных воло­кон. По данным некоторых авторов, от 8 до 12% волокон проходят в центре или по перифе­рии диска зрительного нерва вне расположения стромальных перекладин решетчатой пластин­ки и довольно извилистым путем.

Существует ряд косвенных свидетельств возможности изменения курса волокон. Напри­мер, аксоны ганглиозных клеток могут откло­няться от ожидаемого топографического их пу­ти, как в вертикальной, так и горизонтальной плоскостях слоя нервных волокон и зритель­ного нерва [508, 802]. На такую возможность указывает и тот факт, что количество пор в решетчатой пластинке неодинаковое в передних и задних ее слоях [802]. Одним из механизмов девиации волокон рассматривают также суще­ствование особенностей строения и плотности расположения в передней части решетчатой пластинки клеток астроглии [1106].

Описанное отклонение хода волокон зри­тельного нерва объясняют особенностями эмб­рионального развития этой части глазного яб­лока, а именно особенностями формирования ретинотопических связей [508].

Отклонение хода волокон через решетчатую пластинку может явиться причиной их большей повреждаемости при повышении внутриглазно­го давления (глаукома) в результате сжатия аксонов ганглиозных клеток и нарушения ак-соплазматического транспорта [1203].

В отличие от аксонов преламинарной части, аксоны ретроламинарной части зрительного нерва миелинизированы (рис. 3.7.4, 3.7.7). Мие-линизация наступает в эмбриональном периоде, начинаясь с передних отделов зрительного не­рва. Прекращается она в постнатальном перио­де на уровне диска зрительного нерва. Иногда участки миелинизации можно найти в прелами­нарной части зрительного нерва или даже в сетчатке.


В результате миелинизации аксонов толщи­на зрительного нерва почти удваивается (от 1,5 до 3,0 мм). При этом увеличивается и количе­ство глиальных клеток.

Ретроламинарная часть нерва продолжается во внутриглазничную и окутывается при этом мозговыми оболочками (твердая мозговая обо­лочка, паутинная и мягкая мозговая).

В пределах пучков аксонов располагаются астроциты, олигодендроциты и диффузно рас­сеянные микроглиальные (ретикулоэндотели-альные) клетки.

Диаметр аксонов увеличивается на уровне решетчатой пластинки и уменьшается при про­хождении через отверстия решетчатой плас­тинки.

В заключение раздела имеет смысл привес­ти данные о взаимоотношении диска зритель­ного нерва с окружающими структурами, что имеет определенное практическое значение. Отношение диска к сетчатой оболочке имеет наибольшее значение.

Слои сетчатки отделены от зрительного нерва пограничной глиальной тканью Кунта (Kuhnt). При этом между глиоцитами количест­во межклеточных контактов небольшое (плот­ные контакты). Именно по этой причине между капиллярными сосудами перипапиллярной об­ласти и диском зрительного нерва гемато-энце-фалический барьер не функционирует [1112] (рис. 3.7.14). С этим связано свечение диска зрительного нерва при проведении флюорес­центной ангиографии.

Граница между диском зрительного нерва и сетчаткой обычно наклонная. Угол наклона больше с назальной стороны.

Рис. 3.7.14. Схема особенностей функционирования гемато-офтальмического барьера в области диска зри­тельного нерва (по Tso et al., 1975):

стрелками указаны места отсутствия барьерных функций и на­правление движения высокомолекулярных метаболитов (объяс­нение в тексте)



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


Сетчатка иногда обрывается вблизи диска зрительного нерва на таком расстоянии, что видна сосудистая оболочка в виде пигменти­рованного полумесяца. Скопление клеток пиг­ментного эпителия сетчатки также может фор­мировать схожий полумесяц. В тех случаях, когда сосудистая оболочка и сетчатка «корот­кие», обнаруживается бледный полумесяц скле­ры, окруженный пигментом. Подобное состоя­ние нередко обнаруживается при близорукости. Вблизи зрительного нерва наиболее внутрен­ние пучки коллагеновых волокон склеры распо­ложены меридианально. Промежуточный слой ориентирован как меридианально, так и цирку-лярно. Наиболее поверхностные слои распола­гаются только циркулярно. Последние, по мере приближения к зрительному нерву, перепле­таются с наружными продольными волокнами твердой мозговой оболочки.

Между сосудистой оболочкой, склерой и во­локнами зрительного нерва располагается так называемая «краевая ткань Элшнига», состоя­щая из глиальных клеток.