Меркурий, Венера, Земля и проч. все движутся вокруг Солнца 2 страница

Умозаключение по аналогии, как и любое другое умозаключение, является отображением в нашем сознании обычных отношений вещей. Человек на практике многократно наблюдал постоянство и устойчи­вость связей между признаками в предметах и явлениях внешнего мира. С течением времени эти связи признаков вещей зафиксировались в со­знании человека в виде определенной фигуры логики, которая приоб­рела аксиоматический характер. Так, человек давно заметил, что если в двух предметах или явлениях имеются какие-то общие существен­ные признаки, то вполне возможно, несмотря даже на ряд свойственных этим предметам отличительных черт, предполагать, что эти предметы об­ладают также и другими сходными признаками. Если есть корни, ствол и ветки, то, как правило, есть и листья; если тело жидкое, то в любых сообщающихся сосудах оно расположится на одинаковом уровне, хотя бы эти сосуды отличались формой; если тело хорошо проводит тепло, значит, можно ожидать, что оно хорошо проводит и электричество, и т.д.

Эта уверенность имеет и другое основание в окружающем мире: общая закономерность, которая выражается в существенных призна­ках предмета или явления, всегда встречается в связи с рядом одних и тех же постоянных устойчивых признаков, хотя условия, в которых проявляется данная общая закономерность, могут быть различными.

Привычка нашего ума к аналогии настолько сильна, что она иног­да начинает действовать как бы механически. Аналогия, как мы уже видели, основана на том, что сходные в одном отношении вещи сходны и в остальном. Привыкнув к этому, люди удивляются, что шерстяные одеяла употребляются для предохранения льда от таяния, тогда как обычно шерстяные одеяла применяются для сохранения тепла.

Такой вид аналогии часто встречается в практике самых различ­ных ученых и специалистов. Так, ботаник, замечая по некоторым при­знакам сходство какого-либо растения с известными ему представите­лями вида, относит данное растение к этому виду, предполагая, что в найденном растении есть все, еще и не исследованные видовые призна­ки. Говоря об аналогии, можно сослаться на ряд примеров из истории науки: на аналогию Ньютона между падением яблока и движением не­бесных тел, на аналогию Франклина между электрической искрой и молнией, на аналогию между распространением волн на воде и звука в воздухе и пр.

Ломоносов в одной из своих ранних работ на основании аналогии сделал вывод о том, что свет есть материя. "Один свет, — пишет он, — затемняет другой, например, солнце — свет свечи; подобно тому, как более сильный голос заглушает другой, слабый. Отсюда следует, что свет есть материя". Английский логик Джевонс говорит, что даже жи­вотные "делают заключения" до некоторой степени путем аналогии. Так, битая собака боится каждой палки, и существует очень немного собак, которые не убегут, если вы сделаете вид, будто поднимаете камень, хотя бы на этом месте не было никакого камня. Признание нормальной ана­логии между двумя системами идей, говорит Дж.К. Максвелл, "приво­дит к более глубокому знанию обеих, чем познание, которое можно было получить, изучая каждую систему в отдельности".

Аналогия благодаря своей наглядности и доступности широко используется в математике: а) при изучении десятичных дробей подчеркивается их аналогия с натуральными числами; б) свойства алгебраических дробей аналогичны свойствам арифметических (обыкновенных) дробей; в) методика решения задач на составление уравнений второй степени аналогична методике решения задач на составление уравнений первой степени; г) свойства членов геометрической прогрессии во мно­гом аналогичны свойствам членов арифметической прогрессии и т.п.

Ход умозаключения по этому виду аналогий можно записать в виде следующей формулы:

А имеет признаки а1, а2, а3, х;

В имеет признаки а1, а2, а3;

Вероятно, В имеет и признак х.

Возьмем такой пример: модель самолета (А) имеет такую же форму 1), такое же отношение веса к плоскости крыльев 2), такое же соотношение между весом носовой части и остальной части фюзеляжа (а3), как и конструируемый самолет. При испытании модели в аэродинами­ческой трубе оказывается, что модель неустойчива (x). На основании аналогии (сходство модели и самолета в трех признаках) конструктор непременно сделает вывод, что самолет будет также неустойчив при полете.

Умозаключения по аналогии применяются в физике, строительстве плотин, в лингвистике, кибернетике, истории и т.д. Это, в частности, объясняется тем, что во всех областях науки начинает интенсивно внедряться моделирование, когда возможное поведение интересующих нас объектов исследуется на условных образах, аналогичных исследуемому объекту.

Под моделью (лат. modulus — мера, франц. modèle — образец) в науке понимается искусственно созданный объект в виде схемы, чер­тежа, логико-математических знаковых формул, физической конструк­ции и т.п., который, будучи аналогичен (подобен, сходен) исследуе­мому объекту (самолету, человеческому сознанию, клетке и т.д.), ото­бражает и воспроизводит в более простом, уменьшенном виде струк­туру, свойства, взаимосвязи и отношения между элементами исследу­емого объекта, непосредственное изучение которого невозможно, не­доступно или связано со значительными трудностями, большими зат­ратами средств и энергии, и тем самым облегчает процесс получения информации об интересующем нас предмете.

Исследуемый объект, по отношению к которому строится модель, называется черным ящиком, который представляет собой оригинал, об­разец, прототип, подчас не данный нам в наблюдении.

Все существующие модели обычно подразделяются на три типа: физические, вещественно-математические и логико-математические. Физические модели имеют природу, сходную с природой изуча­емого объекта, и отличаются от него лишь размерами, скоростью тече­ния исследуемых явлений и иногда материалом. Вещественно-ма­тематические модели имеют отличную от прототипов физическую природу, но допускают одинаковое с оригиналом математическое опи­сание. Логико-математические модели конструируются из зна­ков. Это абстрактные модели, которые строятся как исчисления (лат. calculus — счет). Под исчислением понимается, таким образом, систе­ма изучения объектов внешнего мира, в которой предметам какой-либо определенной области ставятся в соответствие материальные знаки (цифры, буквы и др.), и с ними затем по принятым в системе точным правилам производятся операции, необходимые для достижения постав­ленной цели. Исчисление можно определить и как формальное устрой­ство, позволяющее получать одни последовательности символов из дру­гих путем вывода. Исчисления имеют конечный алфавит и правило вывода (С.К. Клини). Математика, возникшая шесть тысячелетий тому назад в Древнем Египте и Вавилонии, строилась прежде всего как исчисление. Только в III в. до н.э. Евклид впервые построил математи­ку в виде аксиоматической теории, т.е. теории, построенной из конеч­ного числа аксиом (греч. axioma — значимое, достойное уважения, при­нятое, бесспорное) — истинных суждений, которые в рамках замкну­той теорий принимаются без доказательств в качестве исходного поло­жения и которые кладутся в основу доказательства всех других поло­жений этой теории. Из аксиом с помощью заданных правил вывода дедуктивно могут быть получены содержательно истинные предложе­ния (теоремы), сформулированные на языке данной теории.

Но до сих пор в современной школе изучение математики начи­нается с нумерации и четырех действий арифметики, т.е. с оперирова­ния знаками (цифрами), что само по себе является исчислением.

В математической логике имеется несколько взаимосвязанных исчислений:

1) исчисление высказываний, изучающее логические операции с простыми высказываниями, которые объединяются в сложные высказывания с помощью логических связок, сходных с принятыми в обычной речи союзами: и (конъюнкция, в математической логике он представлен сим­волом &), или (дизъюнкция, символ V), если ... то... (импликация, сим­вол ®), тогда и только тогда, когда (эквивалентность, символ ~), а также с отрицанием, обозначаемым частицей не (символ ù );

2) исчисление классов, изучающее символику Аристотеля;

3) исчисление предикатов, исследующее операции с высказыва­ниями, расчлененными на субъект и предикат;

4) исчисление отношений, исследующее логические свойства и операции над двухместными, трехместными и т.п. отношениями.

Примером модели, построенной как исчисление, может служить модель (или теория) трансформационных порождающих грамматик (ТТПГ), предложенная выдающимся американским лингвистом Н. Хомским. ТТПГ опирается на тот факт, что любой носитель естественного языка может понять подавляющее большинство предложений, которые он никогда не слышал. Следовательно, в мозгу человека существует ус­тройство, которое помогает ему понимать и воспроизводить правиль­ные фразы известного ему языка (языков) и отвергать неверные. Это устройство, как уже говорилось, называется competence и является объек­том изучения лингвистики, так как этот объект сегодняшними сред­ствами естественных наук не может быть изучен. Ставится задача его моделирования. Под языком в ТТПГ понимается множество цепочек из конечного числа элементов. Одни цепочки являются предложения­ми, другие — нет. Основная задача лингвистики определяется как уме­ние отличить грамматически правильные предложения от неправильных и исследовать структуру правильных предложений. Грамматика — это модель устройства, порождающего все правильные фразы данного языка и только их. Порождение — это не построение в мозгу правиль­ной фразы, а перечисление правильных фраз. При этом грамматичность нельзя путать с осмысленностью и вероятностью встречаемости. Так, неправильными считаются предложения типа:

1)Furiously sleep ideas green colorless (англ.)

2) Read you a book on modern music (англ.)

3) Je n'ai vu rien (фр.)

4) Je n'ai personne vu (фр.).

А предложение Green colorless ideas sleep furiosly (Зеленые бесцвет­ные идеи яростно спят) рассматривается как правильное. Грамматич­ными являются предложения, в которых при замене одних членов дру­гими с теми же грамматическими показателями получается правиль­ная фраза. Каждый человек в своей жизни слышал не так уж много предложений, но всегда может отличить правильную фразу от непра­вильной. Лингвист моделирует структуру такого типа на базе конеч­ного числа известных (наблюденных) правильных и неправильных предложений. В качестве примера могут быть рассмотрены следующие правила порождения, предлагаемые в ТТПГ:

(I) S ® NP+ VP (S — предложение, NP— группа существитель­ного, VР — глагольная группа)

(II) NP ® Det +N

(III) VP ® V+ NP

(IV) Det ® the

(V) N ® man, ball...

(VI) V ® hit, took…

С помощью этих правил можно образовать правильную английскую фразу: The man hit the ball ( "Мужчина ударил по мячу"):

S

NP + VP (I)

Det + N + VP (II)

Det + N + V + NP (III)

the + N + V + NP (IV)

the + man + V + NP (V)

the + man + hit + NP (VI)

the + man + hit + Det + N (II)

the + man + hit + the + N (IV)

the + man + hit + the + ball (V)

Предложения типа The man hit the ball называются ядерными, так как являются следствием прямого вывода. Из ядерных предложений по специальным правилам можно получить пассивные, вопросительные фразы и т.д.

Все правила делятся на Р-правила (правила структуры составляю­щих) и T-правила (трансформационные правила).

А ® В (Р- правила: заменить А на В, или А º В, или "A"is "В");

А Þ В (Т- правила: т.е. В выведено из А).

Р-правила бывают двух видов: контекстно-свободные (context-free) и контекстно-связанные (context-restricted). Правило называется контекстно-связанным, если оно устанавливает, что символ А может быть заменен символом В, только если находится в окружении X Y, т.е. X предшествует А , a Y непосредственно следует за А:

А ® В / X — Y.

Все остальные правила — контекстно-свободные. Действие P-пра­вил определяется следующими требованиями:

1) каждое правило должно развертывать один символ;

2) каждый развертываемый символ (за исключением начального) должен входить и в правую часть какого-либо правила;

3) ни один символ не может заменяться пустым символом (т.е. опускаться);

4) результирующая цепочка должна быть отлична от начальной, т.е.

А Х + A + Y;

5) для любой пары символов в грамматике не может одновременно содержаться пара правил: А ® В; В ® А.

S     NP VP Adv     Det N V NP   Det N   a girl cut the flower yesterday

 


ься пара правил: А ® В; В ® А.

       
   

 


Вывод по Р-правилам может быть представлен в виде дерева. Например:

T-правила — это правила подстановки вида А Þ В. Если Р-правила переводят одни цепочки в другие, то T-правила переводят одни дере­вья в другие деревья. T-правила делятся на обязательные (Tob) и фа­культативные (Topt).

Например, Topt: NP+ VP+ Adv Þ Adv+ NP+ VP (факультативно наречие из конца предложения может быть перенесено в начало).

Левая часть трансформации (T-правила) называется структурным описанием (structural description), правая — структурным изменением (structural change), а сама подстановка — операцией. Операции мо­гут быть элементарными или представлять собой комбинацию элемен­тарных операций. Элементарными операциями являются: 1) добавле­ние (addition); 2) опущение (omission); 3) перестановка (permutation); 4) субституция (substitution).

Примеры:

1) X + Y Þ Х+ Y +Z (добавление)

2) X+ Y Þ Y(опущение)

3) Х+ Y+ Z Þ X +Z + Y (перестановка)

4) Х+ В + С Þ X + D + C, где D может быть только терминальным, т.е. конечным символом.

Правила могут комбинироваться. Например:

B + C + D Þ D + C (перестановка и опущение).

Пример применения трансформационного правила (факультатив­ный перенос наречия в начало предложения, см. рис. ниже).

Правила оперируют с символами, превращая их в цепочки и де­ревья.

Все символы делятся на основные (словарные) и вспомогательные. Словарные символы состоят из символов классов, которые репрезенти­руют составляющие высоких рангов — NP, VP и т.д., и морфемных символов, которые представляют собой составляющие низших рангов — man, hit и т.д. Начальный символ S — sentence (предложение), который относится к основным, задается до первого правила, он определяет гра­ницы порождающей грамматики. Среди морфемных символов разли­чают символы грамматических морфем (морфемы Pres, Past и т.д.) и сим­волы лексических

 

 

 


морфем. Морфемные символы являются конечными, они называются терминальными (лат. termino — ограничивать). Цепоч­ка — это соединение одного или нескольких словарных символов. Вспо­могательные символы делятся на переменные символы, для каждого из которых должна быть задана область его применения ( W, У, Z и т.д.), операторы (®, + и т.д.) и символы сокращений, т.е. скобки. Р-правила устанавливают структуры, лежащие в основе языка, а Т-правила из­меняют структуры. Предложение, полученное применением Т-правил, называется производным, или выведенным, предложением (derived sentence). Терминальные цепочки имеют абстрактный вид, обязатель­ные трансформации (Тов) превращают их в предложения языка, гото­вые к фонетической интерпретации. Предложения, полученные в ре­зультате применения Р-правил и обязательных Т-правил (и только их), — называются ядерными предложениями (kernel sentences). Если два предложения выведены посредством Т-правил из одного глубин­ного, их называют родственными (related sentences). Например, род­ственными являются следующие четыре предложения:

1. Mary hit the boy.

2. The boy was hit by Mary.

3. Whom hit Mary?

4. Who hit the boy?

Общая глубинная структура этих предложений следующая:

 


P-правила всегда предшествуют T-правилам. Оба типа правил строго упорядочены: после применения правила i правило j приме­нять нельзя, если i < j. Одно и то же правило можно применять сколько угодно раз подряд, если сохраняются условия для его применения. Для Р-правил обязательно развертывание нетерминальных символов высших рангов прежде развертывания нетерминальных символов низ­ших рангов, а развертывание нетерминальных символов должно пред­шествовать развертыванию терминальных символов. Эти последствия должны группироваться в конце.

Для T-правил обязательно выполнение следующего требования: более общие правила должны следовать за менее общими, при этом выход одного должен являться входом другого.

Для построения ТТПГ нужен корпус, содержащий: а) список различных максимально грамматичных предложений рассматриваемого языка; б) список различных максимально неграмматичных предложе­ний языка. (Пробную грамматику можно построить уже по первому списку.)

Ключевыми моментами процедуры построения ТТПГ являются:

1. Определение значения морфем и составление словаря вида: мор­фема — ее значение — принадлежность к некоторому классу (напри­мер, к классу суффиксов существительного).

2. Установление того, про какие классы можно сказать, что они образуют субъект и т.п., т.е. установление функций классов, полу­ченных в первом пункте, и выделение типов предложений, объединяе­мых тождественным порядком тождественных функций, например:

субъект — глагол — объект (1-й класс),

субъект — глагол (2-й класс) и т.д.

3.Установление, начиная с самого длинного предложения, и запись в виде таблицы встречаемости классов и позиции этой встречаемости.

4. Установление того, какие элементы встречаются всегда, какие не всегда, какие встречаются вместе и т.п., и сведение таким способом к минимуму число возможных комбинаций и типов.

5. Установление синтаксических отношений между членами в предложениях разных типов.

6. Сравнение типов предложений и изучение их сходства и разли­чия.

7. Запись решения с соблюдением рекомендуемого порядка применения правил.

8. Проверка решения и внесение исправлений.

ТТПГ претендует на статус общей теории, которая объясняет все имеющиеся факты и предсказывает все возможные новые. Объясни­тельные теории считаются высшей ступенью научного описания.

Любая моделирующая теория должна удовлетворять требовани­ям внешней адекватности (в нашем случае — перечислять только пра­вильные предложения) и общности (в ТТПГ общие понятия формули­руются вне зависимости от конкретного языка).

Наука о языке проходит в своем развитии стадии, связанные с тре­мя разными процедурами.

1. Процедура открытия грамматики:

 


2. Процедура суждения о грамматике:

 


3. Процедура выбора грамматики:

 

 

 


На долю лингвистической теории выпадает третья процедура. Причем на современном уровне развития науки о языке становится понятно, что разные грамматики (т.е. разные модели, разные описа­ния) одновременно могут быть признаны удовлетворительными, а их выбор связан с конкретной целью, для которой данная модель строи­лась, т.е. определяется прагматически (например, G1 грамматика, предназначенная для обучения данному естественному языку иност­ранцев, а G2 — грамматика, используемая в программах по автома­тическому переводу).

Любой грамматике как модели должны быть присущи следующие свойства:

1) формальность — апелляция к материальной стороне знака, а не к значению, т.е. опора не на интуицию;

2) эксплицитность — самостоятельная интерпретация всех форм;

3) полнота — покрытие всех фактов языка;

4) простота — использование по возможности меньшего числа символов и обладание максимально обобщенными правилами.

При наличии первых трех свойств четвертое свойство позволяет сравнивать разные грамматики между собой.

По определению Н. Хомского, трансформационная порождающая грамматика языка L — это такое, устройство, находящееся в рамках определенной общелингвистической теории, удовлетворяющее требова­ниям внешней адекватности и общности и обладающее свойствами формальности, эксплицитности, полноты и простоты, которое порождает (т.е. перечисляет) все правильные предложения языка L,приписывает им их структурные описания и не порождает неправильных предло­жений (не предложений).

Трансформационная порождающая грамматика, как показано на схеме, состоит из трех компонентов: синтаксического, фонологическо­го и семантического.

Непреходящее значение теории трансформационных порождающих грамматик заключается в том, что фактически — это единственная полноценная попытка создания непротиворечивой модели языковой способности человека, локализованной в мозгу, но являющейся одной из самых недоступных научных тайн — тайной речевого мышления лю­дей!

 

Схема трансформационной порождающей грамматики

 

Синтаксический компонент Семантический компонент

       
   

 

 


Правила проекции
I

 

 

 


Поверхностные структуры

 

 


Фонетическая репрезентация

Фонологический компонент

 


Три типа моделей: физические, вещественно-математические и ло­гико-математические не являются полностью автономными. Так, ло­гико-математические модели можно воплотить в вещественно-матема­тические и даже в физические и наоборот.

Модели могут создаваться как из однородного с оригиналом ма­териала (например, макет деревянной церкви в Кижах тоже был сделан из дерева), так и из материала, совершенно отличного от матери­ала оригинала (например, модель мыслительной операции логик изоб­ражает в виде чертежа на бумаге или дедуктивного построения).

Простейшей формой физической модели является макет. Так, строители плотин, как правило, первоначально изготовляют макет (мо­дель) плотины в уменьшенном размере и на ней производят необходи­мые измерения, изучают движение воды, формы русла, свойства грун­та, водонапорных сооружений и т.п.; архитекторы строят макет дома; авиаконструкторы — модель самолета и т.д.

В формальной логике модели применяются издавна. Так, например, моделью первой фигуры простого категорического силлогизма, нося­щей название Barbara (см. выше), служит следующая схема:

 


В логике модель выступает, кроме всего прочего, как средство конкретизации, наглядного представления абстрактного. В ней как бы сочетаются в единстве чувственное и логическое.

Логическое моделирование развивалось и в средние века. Испанс­кий философ и богослов Раймунд Луллий попытался смоделировать логические операции с помощью изобретенного им логического круга (первой "логической машины"). В XVIII веке Ч. Стенхоп разработал "демонстратор", который он применял для проверки, в частности, сил­логизмов с количественно определенными предложениями. В XIX веке английский логик У.С. Джевонс построил логическую машину, позво­лившую механизировать ряд процедур в логике классов и в силлогисти­ке. В принципе сегодня открыта возможность моделирования многих умственных процессов, хотя и не создано запоминающих устройств, сравнимых по емкости и эффективности с миллиардами нейронов коры головного мозга. Однако думается, что разработки в сфере искусствен­ного интеллекта a priori ограничены некоторым пределом (см. выше). Сегодня исследования идут по пути моделирования отдельных про­цессов работы мозга и отдельных видов умственного труда, привлекая огромные возможности быстродействующих компьютеров. Моде­лирование все шире начинает применяться в ходе формулирования и проверки гипотез (греч. hypóthesis — основание, предположение) — вероятных предположений о причине каких-либо явлений, достовер­ность которых при современном состоянии производства и науки не может быть проверена и доказана, но которые объясняют данные яв­ления, без них необъяснимые. Гипотеза — прием познавательной деятельности человека.

Остановимся на этой проблеме несколько подробнее. Кроме дан­ного истолкования термина гипотеза, как проблематичного, вероятно­го знания, в логической литературе выделяются еще два значения этого термина: 1) гипотеза в широком смысле слова — как догадка о чем бы то ни было, как описательная гипотеза, которая, как правило, является кратким резюме изученных явлений, описывающим формы их связи; 2) гипотеза в узком смысле слова — как научная гипотеза, которая все­гда выходит за пределы изученного круга фактов, объясняет их и пред­сказывает новые факты; систематизируя знания, научная гипотеза по­зволяет объединить некоторую полученную совокупность информации в систему знаний и образует теорию, если ее предположение подтверж­дается практикой.

В каких же случаях употребляется гипотеза? Она необходима:

1) когда известные факты недостаточны для объяснения причин­ной зависимости явления, а есть надобность в том, чтобы его объяс­нить;

2) когда факты сложны, и гипотеза может принести пользу как обобщение знаний в данный момент, как первый шаг к разъяснению их;

3) когда причины, произведшие или производящие факты, недо­ступны опыту, а между тем действия или следствия их могут быть изу­чаемы.

Значение гипотез в познании окружающего мира огромно. Без ги­потез невозможно развитие современных научных знаний. В процессе производства материальных благ, в ходе научного исследования люди ежедневно открывают десятки и сотни новых фактов и явлений в окружающем их мире. Подавляющее большинство этих новых фак­тов и явлений находит свое объяснение с помощью существующих научных теорий.

Но в жизни нередко бывает так, что то или иное новое явление не поддается истолкованию с помощью существующих уже научных тео­рий, приемов и средств научного исследования. В таких случаях снача­ла выдвигается научное предположение о возможных причинах су­ществования вновь открытого факта или явления природы. Давно, например, было замечено, что с углублением в кору земли через каждые 30—33 метра температура в шахте повышается на 1 градус. На ос­новании этого факта и некоторых других известных явлений (наличие потоков горячей лавы при извержении вулканов, существование горя­чих источников подземных вод и др.) было высказано предположение о том, что внутри земного шара температура достигает многих тысяч градусов. При современном уровне научных знаний и техники дан­ное предположение о температуре внутри земного шара не могло быть доказано путем непосредственного наблюдения. Но, несмотря на это, такое предположение ценно тем, что объясняет ряд природных явлений (повышение температуры Земли с увеличением глубины шахты, высо­кую температуру лавы, изверженной вулканом, и т.д.).