Определение точности измерений

Понятие погрешности измерения

При практическом использовании тех или иных результатов измерений важно оценить их точность. Термин «точность измерений», т. е. степень приближения результатов измерения к некоторому истинному значению, не имеет строгого определения и используется для качественного сравнения измерительных операций. Для количественной оценки применяется понятие «погрешность измерений» (чем меньше погрешность, тем выше точность).

Погрешностью называют отклонение результата измерений от истинного (действительного) значения измеряемой величи­ны. Оценка погрешности измерения - одно из важных мероприятий по обеспечению единства измерений.

Погрешность измерений зависит в первую очередь от погрешностей СИ, а также от условий, в которых проводится измерение, от экспериментальной ошибки методики и субъективных особенностей человека в случаях, где он непосредственно участвует в измерениях. Поэтому можно говорить о нескольких составляющих погрешности измерений или о ее суммарной погрешности.

Количество факторов, влияющих на точность измерения, достаточно велико, и любая классификация погрешностей измерения (рис.15) в известной мере условна, так как различные погрешности в зависимости от условий измерительного процесса проявляются в разных группах.

 

 

Рис. 15. Классификация погрешностей измерения

 

Виды погрешностей

Как указывалось выше, погрешность измерения – это отклонение результата измерения Х от истинного Хи значения измеряемой величины. При этом вместо истинного значения физической величины Хи используют ее действительное значение Хд.

В зависимости от формы выражения различают абсолютную, относительную и приведенную погрешности измерения.

Абсолютная погрешность – это погрешность средства измерений, выраженная в единицах измеряемой физической величины. Она определяется как разность Δ'= Хi - Хи или Δ = X - Хд., где Xi – результат измерения.

Относительная погрешность – это погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к результату измерений или действительному значению измеряемой физической величины. Она определяется как отношение δ = ±(Δ/Хд)·100%.

Приведенная погрешность – это погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений ΧN.

В качестве нормирующего значения можно использовать диапазон измерений прибора, верхний предел измерений и т.д. Она определяется как отношение γ=±(Δ/Χn)·100%.

Методами теории вероятностей установлено, что в качестве действительного значения результата при многократных измерениях параметра, изменяющегося случайным образом, выступает среднее арифметическое значение X:

`X = i ,

где Xi – результат i -го измерения, n – число измерений.

Величина `X, полученная в одной серии измерений, является случайным приближением к Хи. Для оценки ее возможных отклонений от Хи определяют оценку среднего квадратического отклонения от среднего арифметического:

S(`X)= .

Для оценки рассеяния отдельных результатов измерения Xi относительно среднего арифметического `X определяют выборочное среднее квадратическое отклонение:

σ = .

Эти формулы соответствуют центральной предельной теореме теории вероятностей, согласно которой среднее арифметическое из ряда измерений всегда имеет меньшую погрешность, чем погрешность каждого определенного измерения:

S(`X)= σ / .

Эта формула отражает фундаментальный закон теории погрешностей. Из него следует, что если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений нужно увеличить в 4 раза; если точность требуется увеличить в 3 раза, то число измерений увеличивают в 9 раз и т.д.

Нужно четко разграничивать применение величин S и σ: первая используется при оценке погрешностей окончательного результата, а вторая – при оценке погрешности метода измерения.

В зависимости от характера проявления, причин возникновения и возможностей устранения различают систематическую и случайную погрешности измерений, а также грубые погрешности (промахи).

Систематическая погрешность – это составляющая погрешности, принимаемая за постоянную или закономерно изменяющуюся при повторных измерениях одного и того же параметра. Как правило, считают, что систематические погрешности могут быть обнаружены и исключены. Однако в реальных условиях полностью исключить эти погрешности невозможно. Всегда остаются какие-то неисключенные остатки, которые нужно учитывать, чтобы оценить их границы. Это и будет систематическая погрешность измерения.

Случайная погрешность – это составляющая погрешности, изменяющаяся в тех же условиях измерения случайным образом. Значение случайной погрешности заранее неизвестно, она возникает из-за множества не уточненных факторов. Исключить из результатов случайные погрешности нельзя, но их влияние может быть уменьшено путем статистической обработки результатов измерений.

Случайная и систематическая составляющие погрешности из­мерения проявляются одновременно, так что при их независимости их общая погрешность равна сумме погрешностей. В принципе систематическая погрешность тоже случайна и указанное деление обусловлено лишь установившимися традициями обработки и представления результатов измерения.

В отличие от случайной погрешности, выявляемой в целом, вне зависимости от ее источников, систематическая погрешность рассматривается по составляющим в зависимости от источников ее возникновения. Различают субъективную, методическую и инструментальную составляющие систематической погрешности.

Субъективная составляющая погрешности связана с индивидуальными особенностями оператора. Как правило, эта погрешность возникает из-за ошибок в отсчете показаний и неверных навыков оператора. В основном же систематическая погрешность возникает из-за методической и инструментальной составляющих.

Методическая составляющая погрешности обусловлена несовершенством метода измерения, приемами использования средств измерения, некорректностью расчетных формул и округления результатов.

Инструментальная составляющая возникает из-за собственно погрешности средств измерения, определяемой классом его точности, влиянием средств измерения на объект измерения и ограниченной разрешающей способности средств измерения.

Целесообразность разделения систематической погрешности на методическую и инструментальную составляющие объясняется следующим:

для повышения точности измерений можно выделить лимитирующие факторы и, следовательно, принять решение либо об усовершенствовании методики, либо о выборе более точных средств измерения;

появляется возможность определить составляющую общей погрешности, увеличивающейся либо со временем, либо под влиянием внешних факторов, и, следовательно, целенаправленно осуществлять периодические поверки и аттестации;

инструментальная составляющая может быть оценена доразработки методики, а потенциальные точностные возможности выбранного метода определит только методическая составляющая.

Грубые погрешности (промахи) возникают из-за ошибочных действий оператора, неисправности средств измерения или резких изменений условий измерений. Как правило, грубые погрешности выявляются в результате статистической обработки результатов измерений при помощи специальных критериев.