Довгастий мозок і вароліїв міст
Довгастий мозок і вароліїв міст утворюють задній мозок, який разом з середнім і частково проміжним мозком складають стовбур мозку. Задній мозок є філогенетично давнім і зберігає риси сегментарного характеру. Основна маса сірої речовини заднього мозку розподілена по всьому об'єму у вигляді відокремлених ядер. Риси сегментарного характеру проявляються у тому, що тут локалізуються ядра V-XII пар черепних нервів, частина яких іннервує лицеву і окорухову мускулатуру.
Порівняно із спинним мозком, нейронна організація заднього мозку складніша. Тут наявні еферентні нейрони, у тому числі мотонейрони, вставні нейрони, нейрони висхідних і низхідних шляхів.
У найнижчій частині ромбоподібної ямки розміщені ядра під'язиковихнервів, які іннервують м'язи язика. Рухові ядра додатковихнервів є продовженням задньобокових відділів передніх рогів спинного мозку й іннервують м'язи шиї. Блукаючі нерви - змішані і беруть участь у вегетативній, руховій і чутливій іннервації. Відповідно до цих функцій існує три пари ядер: вегетативні, чутливіі рухові.Від вегетативних ядер ідуть парасимпатичні волокна до гортані, стравоходу, серця, шлунка, тонкого кишечника, травних залоз. Чутливі волокна блукаючих нервів від внутрішніх органів утворюють у довгастому мозку солітарнітракти і закінчуються у чутливих ядрах цих трактів. Соматичні, або рухові, ядра рефлекторно регулюють послідовність скорочення м'язів глотки і гортані під час дихання.
Рухові, чутливі і вегетативні волокна містять і язикоглоткові нерви. Рухові волокна іннервують м'язи ротової порожнини і глотки. Чутливі волокна від смакових рецепторів задньої частини язика входять у солітарні тракти. Аксони нейронів вегетативних ядер язикоглоткових нервів забезпечують парасимпатичну іннервацію привушних слинних залоз.
На межі довгастого мозку і моста розміщуються ядра слухових,або присінково-завиткових,нервів, які є чутливими. Слухові гілки нервів утворені волокнами, що ідуть від спірального (кортієвого) органу завитки. Ці волокна входять у довгастий мозок і досягають вентральних і дорзальних слухових ядер. Аксони нейронів цих ядер ідуть до підкоркових центрів слуху. Вестибулярні волокна спрямовані від рецепторів півколових каналів і закінчуються на вестибулярних ядрах (Швальбе, Бехтєрєва і Дейтерса). Частина вестибулярних волокон закінчується у мозочку. Нейрони вестибулярних волокон дають початок вестибуломозочковим і вестибулоспинальним трактам.
Міст, який зв'язує довгастий мозок з середнім, містить ядра лицевих, відвіднихі трійчастихнервів. Лицеві нерви є змішаними. їхні чутливі волокна проводять збудження від рецепторів смаку передньої частини язика. Вегетативні волокна забезпечують парасимпатичну іннервацію підщелепних і під'язикових слинних залоз. Рухові волокна іннервують мімічні м'язи обличчя. Відвідні нерви іннервують зовнішні прямі м'язи очей, а їх чутливі волокна зв'язані з пропріорецепторами цих м'язів. Трійчасті нерви є змішаними: рухові волокна іннервують жувальні м'язи, м'язи піднебінної завіски і м'яз, який напружує барабанну перетинку. Чутливі волокна ідуть від рецепторів шкіри обличчя, слизової оболонки носа, зубів і окістя кісток черепа.
До складу сірої речовини заднього мозку входять ядра Голля і Бурдаха, де знаходяться другі нейрони шляхів шкірно-механічної чутливості.
У центральній частині заднього мозку міститься сітчаста,або ретикулярна,формація. Ретикулярні нейрони розміщуються дифузно і групуються в ядра (гігантоклітинне, малоклітинне, латеральне, каудальнеі оральне).До тіла і дендритів ретикулярних нейронів підходять колатералі від аксонів висхідних чутливих шляхів. З ними контактують і колатералі низхідних рухових шляхів. Від нейронів гігантоклітинного і каудального ядер починається низхідний ретикулоспинальний шлях, який встановлює прямі зв'язки з мотонейронами спинного мозку. Ретикулярна формація має зв'язки з ядрами черепних нервів, з мозочком, а через нього - з корою великих півкуль.
Ретикулярна формація чинить низхідні впливи на нейрони спинного мозку, а висхідні - на кору великих півкуль, мозочок й інші утвори головного мозку. Функція низхідних впливів полягає у полегшенні або гальмуванні нейронів спинного мозку. Висхідні впливи ретикулярної формації активують діяльність кори великих півкуль і визначають рівень активності організму. Послаблення або припинення висхідних впливів ретикулярної формації є причиною сну. Збудження ретикулярної формації аферентними імпульсами викликає пробудження від сну. Висхідні впливи ретикулярної формації надзвичайно чутливі до дії фармакологічних речовин, особливо анестезуючих і заспокійливих препаратів (аміназин, серпазин, резерпин й інші).
У ретикулярній формації заднього мозку зосереджені нейрони, які відіграють важливу роль у регуляції вісцеральних функцій. У ділянці IV шлуночка знаходяться нейрони дихального центру. Пошкодження цієї зони призводить до зупинки дихання. Дослідженням М.О.Миславського (1885) встановлено, що в дихальному центрі знаходиться дві зони. Одна з них пов'язана зі здійсненням вдиху, інша - видиху. Отже, у дихальному центрі можна виділити інспіраторний і експіраторний напівцентри, локалізовані у ретикулярній формації до верхньої межі
моста.
Періодичність у роботі дихального центру забезпечується за рахунок регулюючих впливів пневмотаксичного центру моста. Пневмотаксичний центр періодично загальмовує інспіраторну, і стимулює експіраторну частину дихального центру, здійснюючи у такий спосіб припинення вдиху і початок видиху.
Ще одним важливим центром ретикулярної формації заднього мозку є судиноруховий центр, локалізацію якого встановив Ф.В.Овсянников (1871). Центр займає обширну ділянку від дна IV шлуночка до пірамід. Локальна стимуляція ростральної частини судинорухового центру викликає підвищення тонусу кровоносних судин, підвищення тиску крові і тахікардію. Стимуляція каудального відділу супроводжується розширенням судин, зниженням тиску крові і брадикардією. В судиноруховому центрі наявні, як припускають, нейрони, що розширюють кровоносні судини, і є такі, що їх звужують. Діяльність судинорухового центру узгоджується з функцією рухового ядра блукаючого нерва, який знижує у нормі частоту серцевих скорочень. Тому під час звуження кровоносних судин збільшується частота серцевих скорочень, а під час розширення - зменшується. Через систему блукаючого нерва здійснюється управління діяльністю багатьох внутрішніх органів: підвищується рухова активність шлунка і кишечника, активується секреція травних залоз і т.д.
Рефлекторна діяльність заднього мозку надзвичайно різноманітна, оскільки у ньому замикаються дуги багатьох соматичних і вегетативних рефлексів. У задньому мозку знаходяться такі важливі нервові центри: дихальний, судиноруховий, смоктання, жування, слиновиділення, ковтання, блювання, чхання, кашлю, мигання, сльозовиділення, потовиділення. Наявність у довгастому мозку дихального і серцевосудинного центрів робить його життєво необхідним. Найменші пошкодження (травма, стискання, набряк, крововилив) призводять, як правило, до порушень життєдіяльності і навіть смерті.
Багато рефлекторних реакцій заднього мозку пов'язані з діяльністю органів травлення (смоктання, жування, слиновиділення, ковтання, секреція шлункових і підшлункової залоз).
Такі процеси, як жування, ковтання, блювання, чхання і кашель носять ланцюговий характер і управляють ними кілька центрів. У процесі жування, наприклад, координується діяльність жувальних м'язів, язика, щік, піднебіння і дна рота завдяки руховим ядрам трійчастих і під'язикових нервів.
Акт ковтання координують рухові ядра під'язикових, трійчастих, язикоглоткових і блукаючих нервів. У результаті цього перекриваються входи у дихальні шляхи і харчова грудка проштовхується у порожнину глотки.
Надзвичайно складним координованим актом є блювання, що має захисний характер. Воно призводить до викидання вмісту шлунка через рот. Виникає внаслідок подразнення рецепторів кореня язика, глотки, слизової шлунка і кишечника; може бути викликане збудженням вестибулярного апарату. Отруйні речовини можуть збуджувати центр блювання через кров. Під час блювання відкривається кардіальний сфінктер, настає антиперистальтика кишечника і шлунка, скорочуються діафрагма, м'язи живота, глотки, язика. Розпочинається блювання під час видиху.
Чхання є складним видихувальним рефлекторним актом, який виникає внаслідок подразнення закінчень трійчастого нерва слизової оболонки носа, і має захисний характер. Аферентні імпульси проводяться волокнами трійчастих нервів, а еферентні - волокнами язикоглоткових, блукаючих, під'язикових і деяких спинномозкових нервів. Розпочинається чхання з глибокого вдиху, а закінчується швидким викиданням через ніс повітряного потоку, з яким виганяються подразники (пил, слиз, чужорідні тіла).
Кашель - також складний захисний рефлекс, який виникає внаслідок подразнення рецепторів гортані, трахеї і бронхів. Аферентні імпульси проводяться волокнами блукаючих нервів, еферентні - волокнами язикоглоткових, блукаючих і під'язикових нервів. Кашель розпочинається глибоким вдихом, після якого закривається голосова щілина і різко скорочуються м'язи, які сприяють форсованому видиху. Внаслідок цього підвищується тиск повітря в альвеолах, бронхах і трахеї. Потім відкривається голосова щілина, викидається повітря через рот разом з подразниками.
Моргання - захисний рефлекс - відбувається внаслідок подразнення рогівки або кон'юнктиви ока, що іннервуються чутливими волокнами трійчастих нервів. У довгастому мозку імпульси переключаються на рухові ядра лицевих нервів, волокна яких іннервують колові м'язи ока. Внаслідок скорочення цих м'язів повіки закриваються.
У задньому мозку знаходяться центри вестибулярних рефлексів, які нерозривно зв'язані з шийними тонічними рефлексами і доповнюють їх. Вестибулярні рефлекси не зачежать від положення голови щодо тулуба. їх ділять на статичні і статокінетичні.
Статичні рефлекси пов'язані зі збудженням рецепторів присінка перетинчастого лабіринту, а стато-кінетичні - зі збудженням рецепторів півколових каналів. Обидва типи рефлексів є тонічними. Статичні вестибулярні рефлекси Р.Магнус (1924) поділив на рефлекси положення і рефлекси випрямлення. Рефлекси по-ложення забезпечують зміну тонусу м'язів залежно від положення тіла у просторі. Якщо, наприклад, кішку з фіксованою щодо тіла головою повернути у просторі, то змінюється тонус м'язів. Коли голова кішки піднята вгору під кутом 45° до горизонтальної площини, спостерігається максимальне напруження м'язів-розгиначів. Опускання голови супроводжується зменшенням напруження розгиначів, яке стає мінімальним, коли голова опущена нижче горизонтальної площини на 45°. Рефлекси положення здійснюються нейронами ядра Дейтерса, аксони яких ідуть у спинний мозок у складі вестибулоспинального тракту.
Більш складними є вестибулярні рефлекси випрямлення,що відновлюють положення тварини з неприродної пози у природну, тобто щелепами вниз. Якщо перевернути тварину на спину, то шийні м'язи рефлекторно повернуть голову так, що вона займе природне положення. Зміна положення голови збуджує пропріо-рецептори шийних м'язів, і вони запускають шийний рефлекс випрямлення, внаслідок дії якого тулуб повертається у нормальне положення. Отже, у природних умовах вестибулярні рефлекси випрямлення доповнюють шийні рефлекси. Ось чому початкове падіння кішки з висоти спиною вниз закінчується тим, що у повітрі вона перевертається і опускається на чотири лапи.
Найбільш складними є статокінетичнірефлекси. Вони спрямовані на збереження пози і орієнтації тварини під час змін швидкості її руху або обертання у просторі. Ці рефлекси пов'язані зі збудженням рецепторів півколових каналів.
Якщо рух тварин прискорюється, виникає така рефлекторна зміна тонусу м'язів, яка дає змогу зберегти попередній стан, і тулуб відхиляється назад. Якщо рух тварин сповільнюється, тулуб буде відхилятися вперед. В обох випадках збуджуються рецептори сагітальних півколових каналів.
Прискорення під час обертання тіла у горизонтальній площині збуджує рецептори горизонтальних півколових каналів і спричиняє рефлекторну реакцію окорухового апарату - горизонтальний ністагм:у момент прискорення очі повертаються у протилежний до напрямку обертання бік. Досягнувши крайнього положення, очі швидко повертаються у напрямку обертання і таким чином у поле зору потрапляє інша ділянка простору. Отже, ністагм сприяє збереженню нормальної зорової орієнтації. Крім горизонтального, можна виявити діагональнийі вертикальнийністагм.
До стато-кінетичних вестибулярних рефлексів належать і так звані ліфтні рефлекси:лінійне прискорення вгору підвищує тонус м'язів-згиначів, і людина присідає, а лінійне прискорення вниз підвищує тонус розгиначів, і людина випрямляється.
Середній мозок
Середній мозок - невелика частина стовбура головного мозку, яка сполучає проміжний і задній мозок. У процесі ембріонального розвитку він формується з середнього мозкового, міхура, бокові випини якого переміщуються латерально і утворюють сітківку очей.
Еволюція середнього мозку пов'язана з виникненням і розвитком зору. У ході еволюції функції середнього мозку зазнали більших змін, ніж довгастого: він повністю втратив сегментарні функції.
Анатомічно середній мозок складається з дорзального відділу, який називають покривоммозку, і вентрального - ніжок мозку.Порожниною середнього мозку є водопровід, який сполучає четвертий і третій шлуночки мозку. У складі середнього мозку наявні такі скупчення нервових клітин: чотиригорбикове тіло, червоне ядро, чорна субстанція, ядра окоруховихі блокових нервів,а також ретикулярна формація.
Дорзальна поверхня середнього мозку утворена пластинкою чотиригорби-кового тіла, яке складається з верхніх (передніх)і нижніх(задніх) горбиків. У нижчих хребетних (риби, амфібії) верхні горбики досягають значних розмірів і виконують функцію зорового центру.У рептилій і птахів у середньому мозку відгалужуються нечисельні колатералі від зорових шляхів, які ідуть до колінчастих тіл проміжного мозку. У ссавців більшість волокон зорових шляхів напрямлена до проміжного мозку. Отже, у ході еволюції вищий зоровий центр переміщується у кінцевий мозок, а верхні горбики чотиригорбикового тіла стають підкорковими зоровими центрами.
З розвитком органу слуху у наземних хребетних (рептилії, птахи) формуються нижні горбики чотиригорбикового тіла, що служать місцем перемикання шляхів від слухових і, частково, вестибулярних рецепторів.
У ссавців нижні горбики чотиригорбикового тіла стають підкорковими слуховими центрами. Руйнування чотиригорбикового тіла у ссавців не призводить до повної втрати зору і слуху. Вони досить точно розрізняють світлові і звукові подразники. Проте багато допоміжних рефлексів порушується.
За участю нейронів чотиригорбикового тіла здійснюються орієнтувальні зорові і слухові рефлекси. Тварини, позбавлені великих півкуль, але зі збереженим середнім мозком, повертають голову і очі у бік зорового подразника. Верхні горбики чотиригорбикового тіла беруть участь у здійсненні зіничного рефлексу, тобто у звуженні і розширенні зіниці, регулюють акомодацію і конвергенцію очей. Отже, у ссавців верхні горбики координують рухові реакції, необхідні для сприймання зорових подразнень.
Нижні горбики чотиригорбикового тіла керують руховими реакціями, спрямованими на нормальне сприймання звуку - насторожування і повороти вушних раковин (у тварин) і голови у напрямі до нового звукового подразника.
Ядра чотиригорбикового тіла забезпечують і так званий сторожовий рефлекс, значення якого полягає у підготовці організму до реакції на нове раптове подразнення. Істотним компонентом цього рефлексу є підсилення тонусу м'язів згиначів перед втечею або нападом тварин. До таких реакцій належать здригання і насторожування у відповідь на раптове світлове або звукове подразнення, а також більш складних поведінкових реакцій, аж до втечі. Групу рефлекторних реакцій у відповідь на раптовий світловий або звуковий сигнал часто об'єднують під назвою чотиригорбиковийрефлекс.
Таким чином, структури дорзального відділу середнього мозку беруть участь у регуляції сенсорної інформації і регуляції рухів.
У координації рухів задіяні також структури, розміщені у ніжках мозку.Ніжки мозку - це два товсті валики, що розходяться й ідуть до півкуль кінцевого мозку. Шар сірої речовини (чорна субстанція),що містить пігмент меланін, ділить кожну ніжку на дві частини - основуі покришку.Основи ніжок утворені переважно волокнами провідних шляхів. Покришка кожної ніжки містить велику
кількість ядер.
До них відносять насамперед ядра окорухових і блокових нервів, які розміщені під дном сільвієвого водопроводу. Попереду ядра окорухового нерва знаходиться ядро Даркшевича, від якого розпочинається медіальний поздовжній пучок середнього мозку. Він зв'язує між собою ядра окорухового, блокового і відвідного нервів (заднього мозку), утворюючи єдину функціональну систему, що регулює
рухи очей.
Під ядром окорухового нерва знаходиться непарне ядро Якубовича-Едінгера,парасимпатичні нейрони якого утворюють відростки до ціліарних гангліїв, розміщених позаду очних яблук. Нейрони ціліарних гангліїв іннервують м'язи райдужної оболонки (діаметр зіниці) і м'язи війчастого тіла (кривизна кришталика). Отже, середній мозок відіграє важливу роль у регуляції рухів очей.
Одним з найбільших ядер вентральної частини середнього мозку є чорна субстанція,утворена нейронами, що містять багато меланіну, тому є темними. Вона складається з більшої, сітчастої,і меншої, компактної,частини. Нейрони чорної субстанції утворюють зв'язки з нейронами підкоркових ядер, таламуса, гіпоталамуса, ретикулярної формації і передніх горбиків чотиригорбикового тіла. Функція нейронів чорної субстанції повністю ще нез'ясована. У 60-ті роки XX от, було встановлено, що нейрони чорної субстанції є дофамінергічними, тобто синтезують медіатор дофамін, який належить до катехоламінів. Аксони цих нейронів ідуть до смугастого тіла(хвостатого ядра і лушпини). Руйнування чорної субстанції супроводжується різким (у 2,5-16 разів) зменшенням концентрації нервових закінченнях хвостатого ядра. Припускають, що дофамін викликає гальмування нейронів хвостатого ядра і лушпини. Висловлюється припущенняі про те, що дофамін регулює глікогеноліз. При хворобі Паркінсона різко зменшується концентрація дофаміну у хвостатому ядрі і лушпині.
Нейрони чорної субстанції беруть участь у регуляції тонусу м'язів, тонких ірдинації актів ковтання і жування.
Найбільшими структурамиі вентральної частини середнього мозку є парні мірною субстанцією і сірою речовиною, що оточує сільвіїв водопровід. Червоні ядра містять великі нейрони з товстими аксонами і невелику кількість дрібних нейронів.
Аксони великих нейронів утворюють пучки волокон, які зразу ж переходять на протилежний бік (форелевське перехрестя),а потім - у спинний мозок у складі руброспинальнихшляхів. Деяка кількість цих нейронів посилає аксони до ретикулярної формації середнього мозку.
Волокна руброспинальних шляхів закінчуються на мотонейронах спинного мозку. Ці шляхи є кінцевою ланкою екстрапірамідної системи, що об'єднує впливи переднього мозку, мозочка, вестибулярних ядер і координує роботу рухового апарату.
Місцеве подразнення великих нейронів червоного ядра або руброспиналь-ного шляху викликає збудження α- і γ-мотонейронів м'язів-згиначів і одночасне гальмування мотонейронів м'язів-розгиначів. Ці ефекти є протилежними до тих, які з'являються під час подразнення вестибулоспинального шляху, що бере початок від ядра Дейтерса довгастого мозку. Вестибулоспинальний шлях чинить збуджуючий вплив на α- і γ-мотонейрони розгиначів і гальмівний - на мотонейрони згиначів.
Вважають, що червоне ядро і ядро Дейтерса здійснюють одне на одне гальмівний вплив, який у нормі знижує тонус розгиначів. Про це свідчить встановлений Ч.Шеррингтоном (1925) стан децеребраціиної ригідності.Після перерізання стовбура мозку нижче червоних ядер у тварин різко підвищується тонус м'язів-розгиначів кінціводс, спини і хвоста: кінцівки максимально розгинаються, голова і хвіст відхиляються до спини. Основна причина децеребраційної ригідності полягає у ліквідації гальмівного впливу червоного ядра на ядро Дейтерса. Внаслідок цього переважає дія ядра Дейтерса, що збуджує мотонейрони розгиначів. Припускають, що у природних умовах червоні ядра регулюють протікання пропріорецептивних рефлексів спинного мозку, підкоряючи їх рефлексам вищого порядку.
У людини ригідність може виникнути не тільки внаслідок ураження ней-ронних структур середнього мозку, а й унаслідок порушення функцій кори великих півкуль і пірамідних шляхів. Окрім того, ригідність у людини супроводжується підсиленням тонусу м'язів-згиначів, а не розгиначів.
Таким чином, структури середнього мозку, і в першу чергу, червоні ядра, є одними з вищих центрів регуляції рухової діяльності і підтримання пози. Про це свідчить той факт, що мезенцефальні тварини, в яких зберігається зв'язок спинного мозку з довгастим та середнім, здатні до різноманітних і досконалих рухів. У мезенцефальних тварин не простежується децеребраційна ригідність, м'язовий юпус розподілений більш досконало, і тварини здатні здійснювати рефлекси випрямлення. Якщо надати такій тварині неприродного положення, вона швидко і точно займає звичну для неї позу. Відновлення нормальної пози здійснюється у Гікій послідовності. Спочатку відбувається відновлення нормального положення і онови під впливом сигналів від вестибулярного апарату (лабіринтний рефлекс).
Зміна положення голови відносно тулуба запускає шийний рефлекс випрямлення, після чого тулуб услід за головою займає нормальне положення.
Мозочок
Мозочок, як і ретикулярна формація стовбура мозку, є надсегментарною нервовою структурою. У круглоротих він примітивний і має зв'язки тільки з вестибулярними ядрами. У деяких риб мозочок досягає великих розмірів і зв'язаний зі спинним мозком. У амфібій мозочок дещо редукований, а у рептилій і птахів він утворює тісні зв'язки зі структурами спинного мозку. У ссавців у мозочку формується ділянка, зв'язана з моторними центрами кори великих півкуль. У' найбільш розвиненому мозочку ссавців можна виділити три філогенетично різні частини: давніймозочок (вестибулярний), старий(спинальний) і новиймозочок, який зв'язаний переважно з корою великих півкуль.
За нейронною організацією мозочок ссавців відрізняється від розглянутих відділів мозку: основна частина нейронів розміщена не у товщі, а на поверхні, утворюючи кору. Правда, у товщі білої речовини мозочка також наявні нейрони, що утворюють підкоркові ядра.
Розташований мозочок над дорзальною поверхнею моста і довгастого мозку. Зверху його накривають потиличні частки кори великих півкуль, від яких він відокремлений глибокою поперечною щілиною. У мозочку розрізняють об'ємні бокові частини - півкулі, і розміщену між ними вузьку частину - черв'як.
Мозочок сполучається з стовбуром мозку трьома парами ніжок - нижніми, середніми і верхніми. Верхні ніжки сполучають мозочок з середнім мозком, середні - з мостом, нижні - здовгастим мозком. Хоча сам мозочок не має прямих зв'язків з рецепторами іефекторами, проте він отримує велику кількість аферентних імпульсів. Аферентні волокна входять, в основному, до складу середніх і нижніх ніжок, еферентні зібрані у верхніх ніжках.
Півкулі і черв'як мозочка складаються зрозміщеної на периферії сірої речовини - кори, під якою знаходиться біла речовина. Поверхня мозочка розділена глибокими борознами на частки, а кожна частка - паралельними борознами на закрутки. Групи закруток утворюють часточки. Кожну часточку нумерують латинськими цифрами (І-Х). Найменшими і найбільш відокремленими є флокулоно-дулярні частки (X), які утворюють давній мозочок. До старого мозочка входять ділянки черв'яка, що відповідають переднім часткам (І-V), язичок і парафлокуля-рні відділи. У вищих ссавців найбільш розвинений новий мозочок, який складається з півкуль і ділянок черв'яка, що розміщені каудальніше першої борозни.
У білій речовині мозочка знаходиться три пари ядер. Ядра шатрамістяться ближче до середньої площини білої речовини черв'яка. Латеральніше розміщені вставні,або проміжні,ядра. У людини кожне вставне ядро поділяється на кулястеі коркоподібне.Латеральніше від цих ядер знаходяться найбільших розмірів зубчастіядра.
Кора мозочку має велику поверхню. Враховуючи складки, вона досягає 340 см2, хоча маса мозочка людини становить 120-150 г. Кора мозочка складається з трьох шарів і побудована стереотипно. Верхній шар - молекулярний- це паралельні волокна, розгалуження дендритів і аксонів нейронів, що розташовані у нижніх шарах. У нижній частині молекулярного шару розташовані тіла кошикоподібнихклітин, аксони яких обплітають початкові сегменти аксонів клітин Пуркиньє.Тут же знаходиться невелика кількість зірчастихклітин і клітин Лугаро.
Середній шар кори (гангліозний)складається з клітин Пуркиньє, яких у людини нараховують «15 млн. Це - великі нейрони, що розташовані вертикально, і їхні дендрити широко розгалужені у молекулярному шарі. Аксони цих нейронів опускаються до ядер мозочка.
Нижній шар кори (зернистий) побудований з величезної кількості («10 млрд.) нейронів малих розмірів, які називаються клітинами-зернами, або гранулярниминейронами. Аксони цих нейронів піднімаються у молекулярний шар, і там Т-подібно розгалужуються. Утворені гілки йдуть паралельно до поверхні кори і утворюють синапси на дендритах інших клітин. У зернистому шарі знаходяться і клітини Гольджі,дендрити яких ідуть у молекулярний шар, а аксони до клітин-зерен.
Отже, кора мозочка складається з шести типів нейронів. Залишається незрозумілою тільки функція клітин Лугаро. Кошикоподібні і зірчасті нейрони є гальмівними щодо клітин Пуркиньє. Клітини Гольджі гальмують гранулярні нейрони. Гранулярні нейрони збуджують усі інші проміжні нейрони кори мозочка. Клітини Пуркиньє також гальмівні. їхні аксони є єдиними виходами з кори мозочка і спричиняють гальмування нейронів ядер мозочка. Очевидно, всі нейрони кори мозочка, за винятком клітин-зерен, є гальмівними. Наголошується, що ні у жодному відділі центральної нервової системи немає такрго переважання гальмування над збудженням.
Вивчення функцій мозочка розпочалося на ранніх етапах формування фізіології центральної нервової системи. Першим методичним підходом було повне або часткове його видалення. У людини ця частина мозку найчастіше зазнає травмування, що дало змогу зібрати великий клінічний матеріал. Пізніше почали подразнювати різні ділянки мозочка і застосовувати мікроелектродну техніку для дослідження функцій окремих нейронів. Уперше описав мозочкові порушення у людини італійський вчений ЛЛючіані(1893), який встановив, що часткове або повне ураження мозочка спричиняє атонію, астеніюі астазію.
Атонія характеризується послабленням м'язового тонусу. Зразу ж після видалення мозочка тонус розгиначів може бути підвищений. Тому правильніше говорити, що після видалення мозочка розвивається не атонія, а дистонія,тобто порушення регуляції м'язового тонусу.
Дистонію супроводжують симптоми астенії - слабкість і швидке втомлювання м'язів, унаслідок чого знижується сила м'язових скорочень.
Астазія проявляється в тому, що м'язи втрачають здатність до тетанічних скорочень, унаслідок чого голова, тулуб і кінцівки безперервно тремтять. М'язовий тремор особливо виражений на початку і в кінці довільних рухів.
У результаті обстеження неврологічних хворих, а також видалення мозочка у вищих ссавців, пізніше було встановлено ще декілька симптомів порушення рухів. Асинергіяпроявляється у тому, що порушуються співдружні рухи: відбувається ніби розлад програми цілісного руху і він розпадається на більш простіші рухи. Наприклад, мозочковий хворий торкається пальцем кінчика носа за три прийоми. Асинергія виникає водночас з дисметрією- порушенням розмаху рухів. Вони стають перебільшеними, втрачають точність і можуть бути виконані після багатьох спроб. У мозочкових хворих деформується хода (атаксія).Атаксична хода характеризується широко розставленими ногами і нагадує ходу п'яного. Травмування або видалення мозочка може спричинити адіадохокінез- неспроможність швидко і послідовно виконувати рухи, наприклад, згинання і розгинання пальців. До мозочкових симптомів належить дизартрія- порушення плавності мови.
Без сумніву, мозочок відіграє важливу роль у регуляції пози і рухів. Він доповнює і корегує діяльність інших рухових центрів. Його функції можна звести до: 1) регуляції пози і м'язового тонусу; 2) виправлення повільних і цілеспрямованих рухів у ході їхнього виконання і координації з рефлексами підтримання пози; 3) координації швидких цілеспрямованих балістичних рухів, які здійснюють за командою з кори великих півкуль.
У виконанні першої функції головну роль відіграє черв'як. Він отримує інформацію від соматосеисорної системи і через ядра шатра діє на ядра Дейтерса і ретикулярну формацію. Про це свідчить той факт, що видалення черв'яка супроводжується розгальмуванням ядер Дейтерса і підсиленням децеребраційної ригідності.
Виконання другої функції пов'язано з проміжними зонами кори мозочка, куди також надходить інформація від соматосеисорної системи і, крім того, від рухових зон кори великих півкуль. Низхідні команди від проміжних зон кори мозочка через кулясті і коркоподібні ядра надходять до червоних ядер, а далі до моторних центрів спинного мозку. Завдяки цьому проміжні зони кори мозочка координують цілеспрямовані рухи з рефлексами підтримання пози.
Організація швидких цілеспрямованих рухів, які характерні для виконання спортивних вправ, під час гри на музичних інструментах, мовленні і повертанні очей, здійснюється латеральними філогенетично наймолодшими ділянками кори мозочка ч^ерез зубчасті ядра і без участі соматосеисорної системи. Ці зони кори мозочка отримують інформацію від різних асоціативних зон кори великих півкуль (лобових, тім'яних, скроневих і потиличних) про задум руху. У півкулях мозочка і зубчастих ядрах ця інформація перетворюється у програму руху, яка зворотно передається потім у рухові зони кори великих півкуль, унаслідок чого руховий акт реалізується командами від рухових зон кори у спинний мозок. Отже, швидкі балістичні рухи запрограмовуються, і мозочок має першочергове значення для такого програмування.
Незважаючи на важливу функціональну роль мозочка, стверджують, що він не єжиттєвонеобхідним органом. Про це свідчить той факт, що у людей звродженою відсутністю мозочка не спостерігається яких-небудь серйозних порушень рухів. Про це ж свідчать і клінічні дані щодо пухлинного росту задньочерепної ямки, внаслідок чого руйнується тканина мозочка, але розладу рухів не виникає. Руйнування мозочка у тварин згодом приводить до компенсації рухових розладів, хоча мозочкова тканина не відновлюється. Висловлюється припущення, що така компенсація може відбуватись за рахунок функцій кори великих півкуль. Все це свідчить про те, що мозочок служить своєрідним помічником кори великих півкуль у здійсненні рухових функцій.
7.2.4. Проміжний мозок
Анатомічно проміжний мозок є відділом мозкового стовбура, але в процесі ембріогенезу формується разом з великими півкулями з переднього мозкового міхура.
Головними структурами проміжного мозку вищих тварин і людини є таламус, гіпоталамусі епіталамус.У риб ще немає справжнього проміжного мозку: таламус відсутній, а структури, які потім утворюють гіпоталамус, знаходяться у вентральній частині середнього мозку. Тільки у амфібій формуються зорові горби (таламус) як колектори і координатори всіх аферентних сигналів. Спочатку вважали, що через таламус проходять тільки зорові шляхи, тому він дістав назву зорові горби.
Проміжний мозок - складне скупчення нейронів, які розміщені навколо третього шлуночка і утворюють його бокові, верхні і нижні стінки. Скупчення нейронів бокових стінок утворює таламус, а нижніх і нижньобокових - гіпоталамус (підгорбову частину). Епіталамус складається з розміщених під мозолистим тілом склепіння і залози внутрішньої секреції епіфіза, що утворюють верхню стінку третього шлуночка.
Таламус
Нервові клітини таламуса утворюють приблизно сорок ядер, які ділять на групи (передню, задню, серединну, медіальнуі латеральну).За функціональним значенням розрізняють специфічні, неспецифічні, асоціативніі моторніядра таламуса.
Специфічні ядра таламуса мають безпосередні зв'язки з сенсорними зонами кори великих півкуль. їхнє пошкодження супроводжується випаданням певного виду чутливості. Вони служать передавальною станцією аферентних імпульсів від периферичних рецепторів до кори великих півкуль. Тому їх називають проекційними.Практично всі аферентні шляхи, крім нюхових, перед входом у кору зазнають синаптичного переключення у проекційних ядрах таламуса.
Серед основних проекційних ядер таламуса можна виділити задні вентральніі колінчасті тіла.Задні вентральні ядра належать до латеральної, а колінчасті тіла до задньої групи ядер.
Задні вентральні ядра є основними ядрами шкірної чутливості і чутливості рухового апарату. Сюди надходить інформація від рецепторів шкіри обличчя, тулуба, кінцівок і від пропріорецепторів. Відростки нейронів задніх вентральних ядер передають інформацію у соматосенсорні зони кори великих півкуль (задня центральна закрутка). Електрофізіологічні дослідження нейронів цих ядер свідчать, що вони організовані за топічнимпринципом. Його суть полягає у тому, ще кожен нейрон активує подразнення рецепторів певної ділянки шкіри.
Проекційними ядрами зорової системи є латеральні,або зовнішні,колінчасті тіла, які мають безпосередні зв'язки з потиличними частками кори великих півкуль. Латеральні колінчасті тіла мають шарову структуру і теж організовані за топічним принципом. Аксони, що йдуть у латеральні колінчасті тіла від зорових шляхів, розділені у них надзвичайно чітко: три шари зв'язані зіпсилатеральним оком, а три з контралатеральним. У кожному шарі аксони зорових шляхів утворюють синаптичні контакти з чітко обмеженими групами клітин. Рецепторні поля нейронів латеральних колінчастих тіл є концентричними, центр і периферія яких порізному реагують на зміну освітленості. Рецепторні поля сітківки - це концентрично організовані її рецептори, які мають або збуджуючий (під час вмикання світла) центр і периферійну гальмівну частину, або, навпаки - гальмівний центр і збуджуючу даний нейрон латерального колінчастого тіла периферійну ділянку Така організація рецептивного поля дає змогу нейронам латеральних колінчастих тіл реагувати на контраст між темним і білим і на сумарну яскравість.
У ссавців деякі нейрони латеральних колінчастих тіл можуть збуджуватись або гальмуватись залежно від довжини хвилі світлового стимулу. Таким чином, нейрони латеральних колінчастих тіл, як і нейрони сітківки, беруть участь в аналі' зі зорової інформації.
Проекційними ядрами слухової системи є медіальні,або внутрішні,колін часті тіла, які отримують сигнали від нейронів слухових ядер довгастого мозку і нижніх горбиків чотиригорбикового тіла середнього мозку. Відростки нейронів медіальних колінчастих тіл напрямлені у слухові зони кори великих півкуль (верхні частини скроневих часток кори). Нейрони медіальних колінчастих тіл характеризуються тонотопічною спеціалізацією. Нейрони дрібноклітинної частини медіальних колінчастих тіл пристосовані для сприймання звукової інформації різної частоти. Нейрони крупноклітинної частини цих ядер відповідають як на звукові, так і на інші (соматосенсорні) стимули. Отже, нейрони медіальних колінчастих тіл беруть участь в аналізі звукової інформації. У специфічні ядра таламуса надходять імпульси не тільки від екстерорецепторів і рецепторів рухового апарату, а й від вісцерорецепторів. Установлено, що зони, які сприймають імпульси від віс-церорецепторів, розміщені у тих же ділянках ядра, де знаходяться нейрони, до яких надходять імпульси від екстерорецепторів певних ділянок тіла. Тому можлива взаємодія імпульсів від екстеро- і вісцерорецепторів, завдяки якій при захворюваннях внутрішніх органів біль може відчуватись на поверхні шкіри.
Іншу функціональну групу ядер таламуса утворюють асоціативні ядра, розміщені у його передній частині. Ці ядра отримують імпульси від уже розглянутих специфічних ядер і передають їх у асоціативні зони кори. Ядра подушки зв'язані з асоціативними зонами тім'яної і вискової кори, задні латеральні - з тім'яною корою, медіальні дорзальні - з лобовою корою. Передні ядра мають зв'язки з лімбічною корою великих півкуль. Функція асоціативних ядер остаточно нез'ясована. Вони зв'язані з корою, але не можуть бути віднесені до якої-небудь однієї сенсорної системи. Висловлюють припущення про те, що асоціативні ядра беруть участь у вищих інтегративних функціях мозку.
Моторними ядрами таламуса є вентролагеральні, що сполучають мозочок і базальні ганглії з руховими зонами кори великих півкуль. Отже, ці ядра входять у систему регуляції рухів.
Неспецифічні ядра таламуса за походженням є найбільш давніми. Вони займають медіальні ділянки таламуса, що межують з третім шлуночком. їхню функціональну роль встановили у 1942 р. американські вчені Е.Демпсіі Р.Морісон.У відповідь на електричне подразнення специфічних ядер у сенсорних зонах кори виникають первинні електричні реакції з малим латентним періодом (2-6 мс). Електричне подразнення неспецифічних ядер супроводжується іншою електричною відповіддю кори: її латентний період становить 10-50 мс, амплітуда збільшується у ході подразнення, вона не має строгої локалізації і охоплює великі ділянки кори. Складається враження, що нейрони кори втягуються в активність поступово, тому реакцію кори назвали втягуванням,або рекрутизацією.Так з'ясувалося, що подразнення серединних і інтраламінарних ядер таламуса чинить на кору малоспецифічні впливи, тому ядра називаються неспецифічними.
Електрофізіологічні дослідження свідчать, що неспецифічні ядра таламуса не викликають електричних розрядів коркових нейронів, а тільки підвищують їхню збудливість і полегшують діяльність. Тому підсилюються відповіді коркових нейронів на імпульси від специфічних ядер таламуса. Проте неспецифічні впливи таламуса можуть мати протилежний характер - пригнічувати діяльність її нейронів.
Деякі автори розглядають неспецифічні ядра таламуса як діенцефальну частину ретикулярної формації. Інші розцінюють ретикулярну формацію і неспецифічні ядра таламуса як дві окремі системи, які контролюють збудливість нейронів кори. За морфологічною структурою і функціональними особливостями між ними існують відмінності. Неспецифічні ядра таламуса швидко і короткочасно активують кору, а ретикулярна формація здійснює повільну і тривалу її активацію. Ретикулярна формація активує всю кору, а неспецифічні ядра таламуса - тільки ті ділянки, які беруть участь у конкретних рефлекторних реакціях.
З таламусом тісно пов'язані больова чутливість і больові реакції. Деякі дослідники (Г.Гедй інші) розглядають таламус як вищий центр больової чутливості, їхні твердження грунтуються на таких фактах. Безпосереднє подразнення кори великих півкуль рідко супроводжується больовими відчуттями. Якщо ж подразнювати струмом таламус, виникають больові реакції і неприємні відчуття. Клінічні спостереження також свідчать, що деякі ураження таламуса спричиняють сильні больові відчуття. Найменші подразнення (дотик) викликають у таких хворих важкий біль. Нарешті, у таламічних тварин (з видаленою корою) можна простежити за всім комплексом реакцій (крик, вегетативні зміни), які супроводжують біль.
Наявні приклади, коли внаслідок ураження таламуса порушується сприймання больових відчуттів, тобто настає стан аналгезії, при якому подразнення не викликають болю.
Поки що відсутні відомості про те, які саме ядра таламуса, і які нейронні механізми відповідають за відчуття болю. Вважалось, що неспецифічні ядра таламуса забезпечують сприймання і оцінку больових стимулів, але, взагалі, докази цього відсутні (М.Циммермаи,1985).
Не можна також повністю заперечувати участь кори великих півкуль у формуванні больових відчуттів. Доведено, що при больових подразненнях у сенсорних зонах кори великих півкуль можна зареєструвати викликані потенціали. Відомо й те, що ураження деяких ділянок кори великих півкуль змінюється відчуттям болю. Наприклад, при тяжких ушкодженнях лобових часток хворі можуть зовсім не відчувати болю, поки їхня увага відволікається або вони чим-небудь зайняті.
Підсумовуючи сказане, можна стверджувати, що таламус виконує своєрідну функцію воріт, через які у кору надходить і досягає свідомості інформація про навколишній світ і стан нашого тіла.
Гіпоталамус
Гіпоталамус давно відомий як вищий центр інтеграції вегетативних функцій, які регулюються симпатичним і парасимпатичним відділами вегетативної нервової системи. Він безпосередньо контролює вегетативну нервову систему і секреторну активність гіпофіза.
Гіпоталамус належить до давніх відділів головного мозку і зберігає риси подібності на різних етапах еволюції. Він є вентральною частиною проміжного мозку, утворюючи нижню половинку стінки третього шлуночка. Анатомічно гіпоталамус складається зі скупчення 32-х пар ядер, які ділять на такі групи: преоптичну, передню, середню, зовнішнюі задню(у деяких підручниках виділяють тільки передню, середню і задню групи). У табл. 1 подаємо назви головних ядер різних відділів гіпоталамуса.
Оскільки більшість ядер гіпоталамуса нечітко розмежовуються, їхні функції описують, ділячи гіпоталамус на зони. Так, деякі ядра преоптичної і передньої груп об'єднують у гіпофізотропнугрупу, нейрони якої продукують ліберини і статини, що регулюють функції передньої частки гіпофіза (аденогіпофіза).
Таблиця 1. Головні ядра гіпоталамуса
Група ядер | Назва ядер |
1. Преоптична | Перивентрикулярне, медіальне, латеральне |
2. Передня | Супраоптичне, супрахіазмальне, паравентрикулярне |
3. Середня | Вентромедіальне, дорзомедіальне |
4. Зовнішня | Латеральне, ядро сірого горба |
5. Задня | Заднє, перифорпі кальне, мамілярні (соскоподібні) тіла |
Від вентромедіальної ділянки гіпоталамуса бере початок чіжка гіпофіза, яка сполучається з адено- та нейрогіпофізом (задньою часткою). У передній частині цієї ніжки закінчуються відростки багатьох нейронів преоптичної і передньої ядерних груп. Тут вивільняються ліберини і статини, які через систему портальних судин надходять до передньої частки гіпофіза і регулюють її секреторну активність. Відростки нейронів супраоптичного і паравентрикулярного ядер ідуть до задньої частки гіпофіза, де вивільнюють для збереження окситоцин і вазопресин. Отже, гіпоталамус знаходиться у тісному морфологічному і функціональному зв'язку з гіпофізом, утворюючи єдину гшоталамо-гіпофізарну систему.
Окрім гіпофізотропної, розрізняють медіальну і латеральну зони. Медіальний гіпоталамус формує середня група ядер. Тут знаходяться особливі нейрони, які сприймають важливі параметри внутрішнього середовища організму (температуру крові, водно-електролітний склад плазми, вміст гормонів у крові). У латеральному гіпоталамусі відсутні ядерні зони і нервові клітини розміщуються тут дифузно.
Для гіпоталамуса характерні широкі і складні аферентні і еферентні зв'язки. Аферентні сигнали надходять у гіпоталамус з кори великих півкуль, з ядер таламуса, з ядер базальних гангліїв. Від нього надходять імпульси у зорові горби, гіпофіз, середній, довгастий і спинний мозок. Гіпоталамус бере участь у регуляції вегетативних функцій, терморегуляції і регуляції поведінкових реакцій.
Подразнення задніх ядер гіпоталамуса супроводжується розширенням зіниць, збільшенням частоти серцевих скорочень, звуженням кровоносних судин, підвищенням артеріального тиску, гальмуванням рухової функції шлунка і кишечника, збільшенням вмісту у крові адреналіну і глюкози. В.Гесс (1954) назвав зону заднього гіпоталамуса ерготропною і висловив припущення, що тут знаходяться вищі центри симпатичної нервової системи.
Подразнення преоптичної і передньої ділянок гіпоталамуса супроводжується звуженням зіниць, сповільненням серцевої діяльності, зниженням артеріального тиску, підсиленням рухової функції шлунка і кишечника, зниженням вмісту глюкози у крові, сечовиведенням і дефекацією. Ця зона була названа трофотропною,оскільки внаслідок її подразнення, як і подразнення парасимпатичної нервової системи, виникають ефекти, що спрямовані на відновлення і збереження резервів організму. Є думка, що у передніх ядрах гіпоталамуса знаходяться групи нейронів, які регулюють функції центрів парасимпатичної нервової системи.
Проте деякі факти не узгоджуються з такою локалізацією у гіпоталамусі вищих центрів симпатичної і парасимпатичної нервової системи. Наприклад, судинозвужуючий ефект можна отримати у результаті подразнення ядер як задньої, так і передньої групи.
Важливу роль відіграє гіпоталамус у регуляції обміну речовин і харчової поведінки. Встановлено, що руйнування вентромедіальних ядер супроводжується надмірним споживанням їжі (гіперфагія)і ожирінням: тварина споживає їжу навіть тоді, коли вона не голодна. Отже, у вентромедіальних ядрах знаходиться центр ситості.
У латеральних відділах гіпоталамуса знаходиться центр голоду. Його руйнування призводить до того, що тварина відмовляється від їжі (афагія).Якщо тварину не годувати насильно, вона може загинути від виснаження.
У центри ситості і голоду надходять імпульси від різних рецепторів: глюко-, механо- і терморецепторів. Глюкорецептори - це гіпоталамічні нейрони, чутливі до зміни концентрації глюкози у крові. Механорецептори наявні у стінці шлунка і сприймають зміни об'єму вмісту шлунка.
У гіпоталамусі наявний і центр спраги. Спрага - це стан, коли в організмі не вистачає води, внаслідок чого підвищується осмотичний тиск крові. Подразнення ділянок, які розташовані дорзо-латерально від супраоптичного ядра, веде до підсиленого споживання води (полідипсія),а їх руйнування - до відмови від води (адинсія. Вважають, що у гіпоталамусі наявні осморецептори - нейрони, що збуджуються зі зміною осмотичного тиску крові.
Отже, «голодна» кров, або кров з підвищеним осмотичним тиском, запускає комплекс поведінкових реакцій, які спрямовані на пошуки їжі і води.
Експериментальні і клінічні факти свідчать, що гіпоталамус є інтегративним центром терморегуляції. Передні відділи гіпоталамуса, зокрема паравентрикуля рані ядра, регулюють тепловіддачу. їхнє подразнення супроводжується розширенням кровоносних судин шкіри, підсиленням потовиділення, інтенсифікацією дихання. Пошкодження передніх ділянок гіпоталамуса порушує процеси тепловіддачі і веде до гіпертермії.У передньому гіпоталамусі виявлені теплові нейрони, що збуджуються при підвищенні температури крові.
У задніх відділах гіпоталамуса наявні структури, що регулюють теплопродукцію, їхнє подразнення супроводжується інтенсифікацією обміну речовий, збільшенням частоти серцевих скорочень, тремтінням, а руйнування - зниження м температури тіла (гіпотермією). Виявлено нейрони, що збуджуються зі зниженням температури крові.
У гіпоталамусі розташовані центри, функція яких пов'язана з регуляцією розмноження і статевої поведінки. Пухлинні процеси у гіпоталамусі можуть бути причиною раннього статевого дозрівання, статевої слабкості, порушення менструального циклу. Подразнення заднього гіпоталамуса викликає позитивні емоції, які є складовою частиною статевої поведінки. Згідно досліджень Д.Олдса (1954), у задньому гіпоталамусі наявний центр задоволення. Ін'єкція у задній гіпоталамус невеликих кількостей статевих гормонів викликає у тварин реакції, характерні для статевої поведінки.
Досліди з локальним подразненням певних ділянок гіпоталамуса свідчать, що він бере участь у регуляції захисної поведінки тварин. При подразненні вентромедіальних ядер гіпоталамуса кініка набуває загрозливої пози: вигинає спину, шипить, розпускає пальці, випускає кігті, у неї збільшується частота серцевих скорочень, розширюються зіниці, піднімається шерсть на спині та хвості. Оскільки при цьому відсутній об'єкт агресії, такий стан називають несправжньоюлюттю. Тварини зі зруйнованими вентромедіальними ядрами стають абсолютно ручними.
Зрозуміло, що описані поведінкові реакції (оборонна, статева, харчова) забезпечують виживання особин і виду і їх можна назвати гомеостатичними.
Доведено, що гіпоталамус і гіпофіз утворюють єдину гіпоталамо-гіпофізарну систему. Гіпоталамус регулює секрецію гормонів передньою часткою гіпофіза за участю ліберинів і статинів. Задня частка гіпофіза іннервується нейронами супраоптичного і паравентрикулярного ядер, по відростках яких сюди надходять окситоцин і вазопресин.
Таким чином, невеликий за розмірами гіпоталамус здатний регулювати велику кількість життєвих процесів і поведінкових реакцій. Але ще й досі залишається нербзгаданим те, як він це здійснює. Насамперед висловлюється припущення, що формування цілісної реакції забезпечують не строго анатомічно окреслені нейрони, а ділянки, що широко перекриваються. Вважають також, що у нервових ланцюгах гіпоталамуса закладені чисельні програми, внаслідок реалізації яких виникають різні поведінкові реакції.
7.2.5. Кінцевий мозок
Кінцевий, або передній, мозок є найбільш ростральним відділом центральної нервової системи, до складу якого входять базальні ганглії, або підкоркові ядра, і кора великих півкуль.
Базальні ганглії
За будовою базальні ганглії є структурами ядерного типу, що розташовані у товщі білої речовини переднього мозку між лобовими частками і проміжним мозком. До них відносять: смугасте тіло,що складається з хвостатого ядраі лушпини,і бліду кулю, щомає внутрішнійі зовнішнійвідділи. Смугасте тіло і бліда куля утворюють стріопалідарнусистему. Вона є найбільш досконалою і стала основним утвором переднього мозку у рептилій і птахів. У ссавців прогресує кора великих півкуль, проте стріопалідарна система є невід'ємною частиною інтеграції рухового апарату.
Бліда куля складається з великих нейронів, аксони яких ідуть до ядер проміжного і середнього мозку, зокрема, до червоного ядра і чорної субстанції. У блідій кулі наявні також дрібні нейрони, що виконують, мабуть, контактну функцію.
Хвостате ядро і лушпина містять здебільшого дрібні нейрони з короткими дендритами і тонкими аксонами. Обидва типи нейронів спрямовують аксони до клітин блідої кулі і чорної субстанції.
Більша частина аферентних сигналів, які одержують базальні ганглії, надходить до смугастого тіла. Джерелами цих сигналів є: кора великих півкуль (переважно соматосенсорна), неспецифічні ядра таламуса і чорна субстанція.
Порівняно з іншими відділами центральної нервової системи, функції базальних ядер найменш з'ясовані. Пояснюється це труднощами їхнього ізольованого подразнення або руйнування. Висновки, зроблені після фізіологічних експериментів і клінічних спостережень, щодо функції базальних гангліїв часто не збігаються.
На початку XX ст. сформувалось тверде переконання, що смугасте тіло і бліда куля відповідають за регуляцію рухових автоматизмів, а деструктивні зміни у них є причиною екстрапірамідних патологій.
Ушкодження блідої кулі спричиняє сильне підвищення тонусу скелетної мускулатури (гіпертонус),рухи стають одноманітними і бідними (гіпокінез).У таких хворих з'являється мімічна нерухомість (маскоподібність)обличчя. Гіпертонус виникає тому, що червоне ядро звільняється від гальмування блідою кулею.
Вважалось, що через бліду кулю проходять дуги складних безумовних рефлексів - захисних, орієнтувальних, харчових і статевих.
Ураження смугастого тіла спричиняють гіпотонусі гіперкінези. Гіперкінезаминазивають мимовільні, надлишкові і насильні рухи незвичної форми. До них належать: тремор, клонічні і тонічні судоми(корчі). Тремор— слабкі мимовільні скорочення скелетної мускулатури внаслідок почергової зміни тонусу м'язів-антагоністів. Судоми -різкі мимовільні скорочення м'язів. Для клонічних судомхарактерними є швидка зміна скорочення і розслаблення певної групи м'язів. Так, дегенерація клітин смугастого тіла викликає хорею,під час якої спостерігаються мимовільні і поривчасті рухи голови та кінцівок. Клонічні судоми артикуляційної мускулатури лежать в основі заїкання.Клонічні судоми м'язів обличчя називають тіками. Тонічні судоми- це тривалі скорочення м'язів із збільшенням їхнього напруження. Для атетозувластиві клонічні і тонічні судоми. Атетоз- захворювання, що виникає внаслідок ураження смугастого тіла і характеризується повільними звивистими мимовільними рухами кінцівок. Ураження смугастого тіла супроводжується підсиленням безумовних рефлексів (захисних, орієнтувальних і інших).
Отже, ураження блідої кулі спричиняє гіпертонус і гіпокінези, а ураження смугастого тіла — гіпотонус і гіперкінези. Смугасте тіло розглядають як рухове ядро, що не має самостійних рухових функцій, а тільки гальмує бліду кулю. Атетоз і хорея виникають унаслідок припинення гальмівного впливу смугастого тіла на бліду кулю.
На жаль, руйнування смугастого тіла у собак і кішок не супроводжується експериментальними гіперкінезами, що свідчить про неузгодженість між фізіологічними експериментами і клінічними спостереженнями. Тому висловлюють припущення, що описані розлади рухів пов'язані зі змінами функцій не тільки смугастого тіла, а й інших нервових структур. Як приклад наводять патофізіологічний механізм паркінсонізму.Такі хворі мають маскоподібне обличчя, в них відсутня жестикуляція, обережна хода і тремтять руки. На сьогодні встановлено, що хвороба Паркінсона виникає внаслідок ураження чорної субстанціїсереднього мозку. Згідно сучасних уявлень, у нормі чорна субстанція гальмує хвостате ядро,лушпину і бліду кулюза участю дофаміну як гальмівного медіатора. Виявлено, що у хворих різко зменшується вміст дофаміну у хвостатому ядрі і лушпині. Внаслідок припинення гальмівного впливу чорної субстанції виникає гіперактивність базальних гангліїв. Отже, хвороба Паркінсона зумовлена порушенням функції як чорної субстанції, так і базальних гангліїв. Уведення хворим попередників дофаміну знімає симптоми хвороби Паркінсона.
Рухові функції базальних гангліїв остаточно нез'ясовані. Вважають, що вони є підкорковою сполучною ланкою між асоціативними і руховими ділянками кори великих півкуль. Отримавши інформацію від асоціативних зон кори, вони беруть участь у створенні програм цілеспрямованих рухів з урахуванням їхньої домінуючої мотивації. Інформація від базальних гангліїв надходить у передній таламус і інтегрується з інформацією від мозочка. З ядер Таламуса вона потрапляє у рухову зону кори, що відповідає за реалізацією програм цілеспрямованих рухів. Можна вважати доведеною роль окремих нейронів хвостатого ядра, лушпини і блідої кулі у виробленні різних умовних рефлексів. Імовірно, що базальні ганглії беруть участь у регуляції не тільки рухових, а й сенсорних та вегетативних функцій.
Лімбічна система
Лімбічна система(limbius - край, кайма) знаходиться вище стовбура мозку і оточує його верхню частину. Коркові структури лімбічної системи розміщені на медіальній поверхні півкуль головного мозку. До них відносять поясну закрутку,що переходить у гіпокампову закрутку, власне гіпокампі гачкоподібну закрутку,а також нюховий мозок.Деякі автори зараховують до лімбічної системи орбітофронтальну, острівкову і,частково, скроневукору.
З підкоркових структур до лімбічної системи відносять мигдалиниі ядра мозкової перегородки. Деякі автори до неї зараховують передні таламічніядра, мамілярні тілаі гіпоталамус.
Лімбічну систему називають іноді вісцеральним мозком, іноді колом Папеса.
Усі структури лімбічної кори дзвоноподібно охоплюють основу переднього мозку і служать своєрідною межею між новою корою (неокортексом)і стовбуровоючастиною мозку. Безпосередніх зв'язків між лімбічною корою й іншими ділянками кори мало. Винятком є тільки безпосередні зв'язки між лімбічною корою і лобовою корою. Припускають, що лобова кора- основний відділ нової кори, що регулює діяльність лімбічної системи. Скроневіділянки кори відповідають за передачу інформації від зорової, слухової і соматосенсорної кори до мигдалин і гіпокампа. Імпульси від чутливих, рухових і асоціативних зон кори надходять у лімбічну систему через передні ядраталамуса. Від лімбічної системи імпульси надходять насамперед до гіпоталамуса,а від нього - до гіпофізаі вегетативноїнервової системи. Встановлені складні циклічні зв'язки, що забезпечують циркуляціюімпульсів у межах лімбічної системи.
У лімбічній системі наявні тришарова старакора (аллокортекс),до якої відносять стародавню (палеокортекс)і давню (архікортекс)кору, і п'ятишарова перехіднакора (мезокортекс). Тривалий час функцію аллокортекса пов'язували тільки з нюхом. Проте виявилося, що у аллокортексі наявні проекції й інших аферентних систем. Усе це змусило розширити погляди на функцію аллокортекса. Американський вчений Д.Папесще у 1937 р. висловив думку про те, що ці структури мозку відповідають за здійснення природжених поведінкових реакцій і формування емоцій. Погляди Д.Лапесарозвинув інший амеиканський вчений П.Мак-Лін(1952) і ввів поняття лімбічна система.
Подальшими дослідженнями встановлено, що електричне подрдаення різних структур лімбічної системи спричиняє складні поведіиковіакти, що пов'язані з харчовоюі статевоюповедінкою, нападомі втечею.Такі рведінкові акти супроводжуються емоціямизадоволення, люті, огиди і страху.
Під час поведінкових реакцій нова кора відповідає за орієнтацікорганізму у просторі і часі і за логічне мислення. Лімбічна система надає інфомації, що надходить від внутрішнього середовища і зовнішнього йвіту, того собливого значення, яке вона має для конкретного організму. Лімбічна система бее участь у запуску таких емоційних реакцій, які вже апробовані досвідом. Том; вона маєвідношення до процесів навчанняі пам'яті.
Лімбічна система покращує пристосованість організму до мінлвих умов існування. Внаслідок ураження лімбічної системи поведінка стає неадекватною. Отже, поведінкові акти, що регулюються лімбічною системою, пов 'яті зі збереженням особини і виду.
Пошкодження лімбічної системи людини порушує емоційну оведінку. Емоціяминазивають психічні стани і процеси у людини, через які реаліуються її ситуативні переживання. До емоцій належать як негативні(ненавжь, гнів, лють, тривога, страх), так і позитивні(радість, щастя, любов) афектвні стани. Кожна людина усвідомлює свій емоційний стан і завдяки мові може нм поділитися з іншими людьми.
У даний час відсутня загальновизнана теорія емоцій, немає точих даних про те, в яких центрах і як виникають емоції. Можливо, у розвитку емоій беруть участь усі структури лімбічної системи, гіпоталамусі лобовіділянкжори. Тому розглянемо роль окремих відділів лімбічної системи на основі клінічих і експериментальних даних.
Мигдалина- великий підкорковий високодиференційований ядерний утвір, розміщений у глибині скроневої частки кори. Електричне поразнення будь-яких ділянок мигдалини кішки або мавпи супроводжується виникняням або пригніченням тих же гомеостатичних і поведінкових ефектів, які винйають під час стимуляції гіпоталамуса. Двобічне руйнування мигдалини цих же зарин несупроводжується порушенням гомеостатичних функцій у той час, як їх оведінка різко змінюється.
Двобічне видалення мигдалини у мавп є причиною втрати ними нутрішньогрупової соціальної поведінки.Вони цураються інших членів груп, виглядають схвильованими і невпевненими. Такі тварини не можуть оцінювач зорову, слухову, нюхову інформацію, що необхідна для їхньої поведінки у групи. Вони нездатні порівнювати цю інформацію зі своїм настроєм, що необхідно для встановлення взаємовідносин у групі. Вважають, що в основі цього явища знаходиться порушення двобічної передачі інформації між скроневими ділянками кори і структурами гіпоталамуса.
Експерименти свідчать, що подразнення одних ділянок мигдалин спричиняє поведінкові акти, пов'язані зі споживанням їжі (жування, ковтання, злизування), а подразнення інших супроводжується такими емоційними реакціями, як страх, гнів, лють і агресія. Тварина нападає на інших тварин і навіть на експериментатора. При пошкодженні мигдалини тварини стають лагідними, ненажерливими і гіперсексуальними.
Подразнення або пошкодження ядер перегородки також позначається на емоційній поведінці тварин. Унаслідок їхнього подразнення агресивні тварини стають лагідними, а внаслідок пошкодження - агресивними. Подразнення багатьох ділянок перегородки супроводжується актами статевої і батьківської поведінки.
Неподалік від мигдалини знаходиться гіпокамп. Його роль у формуванні емоцій не повністю зрозуміла, але тісні зв'язки з мигдалиною дають підставу припускати, що він бере участь у цьому процесі. Про це свідчить і той факт, що пошкодження гіпокампа супроводжується приступами люті.