Загальні відомості з геодезії

 

1.1. Предмет та завдання геодезії

Геодезія - наука, яка вивчає форму та розміри земної кулі або окремих ділянок її поверхні шляхом вимірювань, технологію складання планово-картографічних матеріалів та методи використання результа­тів вимірювань і побудов для вирішення інженерних задач. У перекладі з грецької слово "геодезія" означає "ділення землі".

Проведення будь-якого заходу, пов'язаного з використанням землі в сільському, лісовому чи парковому господарстві, будівництвом інже­нерних споруд та комунікацій, вимагає детального вивчення місцевості, де ці заходи мають проводитись, її рельєфу, розміщення на ній об'єктів природного та штучного походження. Ця робота пов'язана з проведен­ням спеціальних геодезичних вимірювань, за результатами яких скла­дають планово-картографічні матеріали.

Узагальнюючи, основним завданням геодезії можна вважати ви­вчення методів вимірювання ліній та кутів на поверхні Землі, над або під нею за допомогою спеціальних геодезичних приладів, обчислю­вальної обробки результатів цих вимірювань, побудови карт, планів, профілів місцевості та практичного використання результатів геодезич­них робіт. Особливо важливе значення геодезія має у землевпоряд­куванні - системі державних заходів, спрямованих на здійснення рі­шень державних органів у справі користування землею, організації найбільш повного, раціонального та ефективного використання земель, підвищення культури землеробства й охорони земель.

Геодезія, як інженерна дисципліна, у своїй теорії та практиці вико­ристовує досягнення низки інших наук. Для оцінки та обробки результа­тів вимірювань на місцевості вона опирається на математику. Визна­чаючи географічні координати точок (широту й довготу) та орієнтуючи лінії відносно сторін світу, застосовують астрономічні методи. Користу­вання геодезичними приладами, перевірка їхньої готовності до роботи вимагають знань фізики та точної механіки. У процесі геодезичних ви­шукувань широке застосування мають аерофотознімки, тому геодезист повинен знати принципи аерокосмічних знімань місцевості. Побудова планово-картографічних матеріалів потребує навичок топографічного креслення. Крім того, геодезія має тісний зв'язок з географією, гео­морфологією та іншими дисциплінами.

 

1.2. Поняття про форму та розміри Землі.

 

Однією з важливих задач геодезії є вивчення форми та розмірів земної кулі. Фізична поверхня Землі (поверхня материків, дна морів та океанів) має складну форму, яку неможливо виразити будь-якою ма­тематичною формулою. Тому в геодезії введено поняття рівневої по­верхні. Її можна уявити як поверхню Світового океану у спокійному стані подумки продовжену під материками. Ця поверхня обмежує тіло Землі, яке називають геоїдом. Поверхня геоїда також є дуже складною і не визначається математичними формулами.

Найточніше фігуру та розміри земної кулі характеризує тіло, утворене обертанням еліпса
навколо його малої осіР1-Р2 (рис.1.1).Таке тіло називають земним еліпсоїдом. Розміриеліпсоїда визначають довжини його великої (а) та малої (b) півосей і полярний стиск а = (а — b) / а.За результатами астрономо-геодезичних та гра-
віметричних робіт учені різних країн уточнювали ці величини. Дані деякихіз цих досліджень представлені у табл. 1.1.

1.3. Елементи вимірювань на місцевості. Одиниці мір

 

Для того, щоб нанести контур якогось об'єкта місцевості на папір, необхідно знати взаємне положення характерних точок цього об'єкта. Його визначають шляхом вимірювань довжин ліній між точками та ку­тів, утворених цими лініями. Будуючи план, на папері слід відкладати не виміряні на місцевості відстані, а їхні горизонтальні проекції. Для цього необхідно знати кути нахилу ліній. Кутом нахилу а називається кут між лінією місцевості та горизонтальною площиною. Кути нахилу ліній можуть бути додатними і від'ємними, вони позначаються знаками "+" (плюс) і"-" (мінус).

Горизонтальну проекцію (прокладення) лінії d визначають як до­буток її довжини D на косинус кута нахилу α (рис. 1.2):

d = Dcosα (1.1)

 

Часто на практиці обчислюють не прокладення лінії, а різницю між довжиною лінії місцевості та її горизонтальною проекцією, так звану поправку х за нахил лінії:

(1.2)

Кути нахилу ліній враховують тоді, коли вони перевищують 2°. При менших кутах поправки за нахил будуть незначними і ними нехтують.

Горизонтальним кутом, який відповідає напрямам із точки А на точки В і С, є кут bас (рис. 1.3), що лежить в горизонтальній площині й ви­ражає величину двогранного кута, утвореного вертикаль ними площинами, які проходять через прямовисну лінію Аа в точці А і через точки В і С. Іншими словами, горизонтальний кут - це плоский кут між проекціями ліній місцевості на горизонтальну площину. Горизон­тальні кути вимірюють з різною точністю кутомірними приладами - бусоллю (гоніометром), теодолітами.­