Статистические методы прогнозирования

Статистические методы изучены лучше всего, однако не являются единственно возможными. В ряде случаев прибегают к построению сцена­риев развития, морфологическому анализу, историческим аналогиям. Но­вым подходом к прогнозированию НТП является, в частности, «симптома­тическое» прогнозирование, суть которого заключается в выявлении «предвестников» будущих сдвигов в технике и технологии. Однако в прак­тике экономики преобладающими по-прежнему являются статистические методы (что связано с наличием инерционности). Немаловажным является и то, что статистические методы опираются на аппарат анализа, развитие и практика которого имеют достаточно длительную историю.

Процесс статистического прогнозирования распадается на 2 этапа:

Индуктивный, заключающийся в обобщении данных, наблюдаемых за более или менее продолжительный период времени, и в представлении соответствующих статистических закономерностей в виде модели. Про­цесс построения модели включает: выбор формы уравнения, описывающе­го динамику или взаимосвязь явлений; оценивание его параметров.

Дедуктивный — собственно прогноз. На этом этапе определяют ожидаемое значение прогнозируемого показателя.

Не всегда статистические методы используются в чистом виде. Часто их включают в виде важных элементов в комплексные методики, преду­сматривающие сочетание статистических методов с другими, например, экспертными оценками.

Статистические методы основаны на построении и анализе динами­ческих рядов, либо данных случайной выборки. К ним относятся методы прогнозной экстраполяции, корреляционный и регрессионный анализ. В группу статистических методов можно включить метод максимального правдоподобия и ассоциативные методы — имитационное моделирование и логический анализ.

Динамику исследуемых показателей развития хозяйственной систе­мы можно прогнозировать при помощи двух различных групп количест­венных методов: методов однопараметрического и многопараметрического прогнозирования.Общим для обеих групп методов является, прежде всего, то, что применяемые для параметрического прогнозирования математиче­ские функции, основываются на оценке измеряемых значений прошедшего периода (ретроспективы). Однопараметрическое прогнозирование базиру­ется на функциональной зависимости между прогнозируемым параметрам (переменной) и его прошлым значением, либо фактором времени.

ŷt+1=ſ(yt,yt-1,…,yt-n). (2.1)

При обработке таких прогнозов пользуются методом экстраполяции трендов, экспоненциальным сглаживанием или авторегрессией.

В основе многопараметрических прогнозов лежит предположение о причинной взаимосвязи между прогнозируемым параметром и нескольки­ми другими независимыми переменными:

ŷt+1=f(x), или;

ŷt+1=f(x1, x2,…, xn).

Однопараметрические методы следует использовать при кратко­срочном (менее одного года) прогнозирования показателей, изменяющихся еженедельно или ежемесячно. Многопараметрические оправдывают себя для средне- и долгосрочного прогнозирования.

Выбор конкретного параметрического метода прогнозирования, кроме того, зависит от характера исходной статистической базы. В качест­ве исходных данных могут быть взяты выборочные наблюдения и динами­ческие ряды. В первом случае в качестве инструмента прогноза применя­ется регрессия. Значительно чаще, чем случайная выборка, информацион­ной базой для прогноза являются динамические ряды.

В целом процесс вы­бора конкретного метода статистического параметрического прогнозиро­вания показан на рис. 2.2. [39].

 
 

 


Да нет да нет

 


Нет

Инструмент прогноза   Скользящие и экспоненциаль- ные средние, ав- торегрессия
да нет да

               
       
 
 
 

 

 


Рис.2.2.Схема выбора статистического метода прогнозирования

 

Методы экстраполяции сводятся к обработке имеющихся данных об объекте прогнозирования за прошлое время и распространению обнару­женной в прошлом тенденции на будущее.

Методы моделирования — наиболее сложный метод прогнозирова­ния, состоящий из разнообразных подходов к прогнозированию сложных систем, процессов и явлений. Эти методы могут пересекаться и с эксперт­ными методами.

Экстраполяция трендов

Наиболее распространенными из группы математических методов являются методы прогнозной экстраполяции. Временной ряд при экстра­поляции представляется в виде суммы детерминированной (неслучайной) составляющей, называемой трендом, и стохастической (случайной) со­ставляющей, отражающей случайные колебания или шумы процесса.

Прогнозную экстраполяцию можно разбить на два этапа.

• Выбор оптимального вида функции, описывающей ретроспектив­ный ряд данных. Выбору математической функции для описания тренда предшествует преобразование исходных данных с использованием сгла­живания и аналитического выравнивания динамического ряда.

• Расчет коэффициентов (параметров) функции, выбранной для экст­раполяции.

Для оценки коэффициентов чаще остальных используется метод наименьших квадратов (МНК).

Сущность МНК состоит в отыскании коэффициентов модели тренда, минимизирующих ее отклонение от исходного временного ряда:

S = ∑(yt - ŷ)2 → min, (2.3)

где ŷ, - расчетные (теоретические) значения тренда;

у — фактические значения ретроспективного ряда;

n — число наблюдений.

Подбор модели в каждом конкретном случае осуществляется по це­лому статистически ряду критериев (дисперсии, корреляционному отно­шению и др.). Кроме того, для выбора зависимости ŷt=f(t)

существует несколько подходов. Это метод последовательных разностей, метод характеристик прироста, визуальный (глазомерный) выбор формы. Расчет оценок прироста показателя, дополненный визуальным выбором взаимосвязи, уменьшает риск неправильного выбора модели для прогнози­рования. В частности, могут быть рекомендованы следующие аппрокси­мирующие зависимости:

∆ Y / ∆ t = const → ŷt =a0 + a1 t, (2.4)

∆ ln y / ∆ t = const → ŷt = a0 ta, (2.5)

∆ ln y / ∆ ln t = const → ŷt = a0 tt1, (2.6)

∆ Y2 / ∆ X2 = const → ŷt = a0 + a1 t + a2 t2, (2.7)

∆ (t / y) / ∆ t = const → ŷt = t / (a0 + a1 t). (2.8)

В Приложении 1 показаны графические зависимости, позволяющие осуществлять визуальный выбор формы зависимости прогнозируемого по­казателя от фактора времени, а в Приложении 2 - системы нормальных уравнений, применяемые для оценки параметров полиномов невысоких степеней.

Для выявления более четкой тенденции уровни, нанесенные на гра­фик, можно сгладить (элиминировать) с помощью трех приемов:

• метода технического выравнивания - когда на графике визуально (на глаз) проводится равнодействующая линия, отражающая на взгляд ис­следователя тенденцию развития;

• метода механического сглаживания - расчет скользящих и экспо­ненциальных средних;

• метода аналитического выравнивания - построение тренда.

Преимущество трендовой модели в более высокой степени надежно­сти. Кроме того, она позволяет экономически интерпретировать параметры уравнения тренда и достаточно наглядно изображает тенденцию и откло­нения от нее на графике.

В рыночной ситуации можно порекомендовать конкретные виды функций, наиболее пригодные для экстраполяции [29].

Спрос на ряд непродовольственных товаров может быть описан сте­пенной функцией или экспонентой (особенно на активных этапах жизнен­ного цикла товаров). Общие закономерности спроса отражаются кривой Гомперца. При изучении влияния фактора времени на спрос может быть использована логистическая (сигмоидальная) кривая. Процесс затухания роста спроса по мере перехода населения к группам населения с более вы­соким доходом отражается полулогарифмической кривой.

В развитии рынка как единого экономического пространства (как и в развитии локальных рынков) могут проявиться определенная повторяе­мость, цикличность, обусловленная как внутренними свойствами рынка, так и внешними причинами.

Рис. 2.3. Моделирование тенденции продажи товара по стадиям жизненного цикла

Условные обозначения:1 - выведение товара на рынок; 2 - рост; 3 - зрелость; 4 - упадок; 5 - реанимация спроса.

 

В условиях переходной экономики возрастает значимость прогнози­рования жизненного цикла товара (ЖЦТ). Автором концепции ЖЦТ счи­тается известный маркетолог Теодор Левитт, предложивший ее в 1965г.

Суть прогноза заключается в том, чтобы определить, как надолго и насколько интенсивно будет сохраняться спрос на данный товар. Прогноз ЖЦТ - многоплановый процесс, важной составляющей которого является подбор для каждого этапа соответствующей трендовой модели, отражаю­щей не только рост, стабилизацию или спад, но и степень ускорения или замедления этих процессов. Такой прогноз является составным элементом прогнозирования покупательного спроса и рыночной конъюнктуры.

Жизненный цикл товара можно графически смоделировать в виде сложной кривой (рис. 2.3).

Математически смоделировать весь жизненный цикл товара практи­чески невозможно, пришлось бы использовать сложную многочленную функцию, которую трудно интерпретировать. Целесообразно использовать метод линейно-кусочных агрегатов, то есть моделировать и прогнозиро­вать каждый этап ЖЦТ с помощью трендовой и (или) многофакторной мо­дели, отражающей закономерности каждого этапа.