Лингвистические переменные

Напомним, что лингвистической называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка. Множество допустимых значений лингвистической переменной называется терм-множеством. Задание значения переменной словами, без использования чисел, для человека более естественно. Ежедневно мы принимаем решения на основе лингвистической информации типа: "очень высокая температура"; "длительная поездка"; "быстрый ответ"; "красивый букет"; "гармоничный вкус" и т.п. Психологи установили, что в человеческом мозге почти вся числовая информация вербально перекодируется и хранится в виде лингвистических термов. Понятие лингвистической переменной играет важную роль в нечетком логическом выводе и в принятии решений на основе приближенных рассуждений. Формально, лингвистическая переменная определяется следующим образом.

Определение 44.Лингвистическая переменная задается пятеркой , где - ; имя переменной; - ; терм-множество, каждый элемент которого (терм) представляется как нечеткое множество на универсальном множестве ; - ; синтаксические правила, часто в виде грамматики, порождающие название термов; - ; семантические правила, задающие функции принадлежности нечетких термов, порожденных синтаксическими правилами .

Пример 9.Рассмотрим лингвистическую переменную с именем "температура в комнате". Тогда оставшуюся четверку можно определить так:

  • универсальное множество - ; ;
  • терм-множество - ; {"холодно", "комфортно", "жарко"} с такими функциями принадлежностями ( ):
  • синтаксические правила , порождающее новые термы с использованием квантификаторов "не", "очень" и "более-менее";
  • семантические правила , в виде таблицы 4.

Таблица 4 - Правила расчета функций принадлежности

Квантификатор Функция принадлежности ( )
не t
очень t
более-менее t

Графики функций принадлежности термов "холодно", "не очень холодно", "комфортно", "более-менее комфортно", "жарко" и "очень жарко" лингвистической переменной "температура в комнате" показаны на рис. 13.

Рисунок 13 - Лингвистическая переменная "температура в комнате"

Нечеткая истинность

Особое место в нечеткой логике занимает лингвистическая переменная "истинность". В классической логике истинность может принимать только два значения: истинно и ложно. В нечеткой логике истинность "размытая". Нечеткая истинность определяется аксиоматически, причем разные авторы делают это по-разному. Интервал [0, 1] используется как универсальное множество для задания лингвистической переменной "истинность". Обычная, четкая истинность может быть представлена нечеткими множествами-синглтонами. В этом случае четкому понятию истинно будет соответствовать функция принадлежности , а четкому понятию ложно - ; , .

Для задания нечеткой истинности Заде предложил такие функции принадлежности термов "истинно" и "ложно":

;

, ,

где - ; параметр, определяющий носители нечетких множеств "истинно" и "ложно". Для нечеткого множества "истинно" носителем будет интервал , а для нечеткого множества ложно" - ; .

Функции принадлежности нечетких термов "истинно" и "ложно" изображены на рис. 14. Они построены при значении параметра . Как видно, графики функций принадлежности термов "истинно" и "ложно" представляют собой зеркальные отображения.

Рисунок 14 - Лингвистическая переменная "истинность" по Заде

Для задания нечеткой истинности Балдвин предложил такие функции принадлежности нечетких "истинно" и "ложно":

где .

Квантификаторы "более-менее" и "очень" часто применяют к нечеткими множествами "истинно" и "ложно", получая таким образом термы "очень ложно", "более-менее ложно", "более-менее истинно", "очень истинно", "очень, очень истинно", "очень, очень ложно" и т.п. Функции принадлежности новых термов получают, выполняя операции концентрации и растяжения нечетких множеств "истинно" и "ложно". Операция концентрации соответствует возведению функции принадлежности в квадрат, а операция растяжения - возведению в степень ½. Следовательно, функции принадлежности термов "очень, очень ложно", "очень ложно", "более-менее ложно", "более-менее истинно", "истинно", "очень истинно" и "очень, очень истинно" задаются так:

;

;

;

;

.

Графики функций принадлежности этих термов показаны на рис. 15.

Рисунок 15 - Лингвистическая переменная "истинность" по Балдвину