Конструктивно-технологические решения замены междуэтажных перекрытий
В большинстве случаев основной причиной проведения реконструкции жилых и гражданских зданий старой постройки является повышенный износ конструкций междуэтажных перекрытий, лестничных маршей и площадок. Замена таких конструктивных элементов не только является дорогостоящим и трудоемким видом работ, но и вносит значительные изменения в нагрузки на стеновые конструкции и фундаменты. Поэтому процессу принятия решения о материале и конструкции заменяемых перекрытий предшествуют расчеты несущей способности стен и фундаментов.
Повышение капитальности и огнестойкости реконструируемых зданий достигается путем замены перекрытий из сборных, монолитных и сборно-монолитных железобетонных элементов.
Анализ конструктивных решений при сборном варианте показывает, что серьезными препятствиями на пути осуществления общей технической политики в области проектирования реконструкции жилых зданий являются большая номенклатура конструкций и их высокая себестоимость.
Тенденции использования эффективных сборных конструкций шли по пути моделирования старых технологических схем перекрытий по деревянным или металлическим балкам с адаптацией их к железобетонным конструкциям. Это привело к их разнотипности, мелко-штучности и нетехнологичности как в процессе изготовления, так и монтажа.
При замене перекрытий целесообразно выделить несколько конструктивных решений, отличающихся более высокими индустриальностью и технологичностью. К ним следует отнести: использование балочных систем с заполнением пустотелыми керамическими или керамзитобетонными блоками; сборно-монолитные перекрытия по металлическим балкам с заполнением мелкоштучными плитами-вкладышами; сборно-монолитные перекрытия с применением несъемной опалубки из железобетонных плит-скорлуп, профнастила, пенополистирольных плит; монолитные балочные и безбалочные перекрытия; перекрытия из железобетонных плит многопустотного настила по металлическим балкам.
Область применения конструктивных решений зависит от степени износа несущих стен, изменившихся нагрузок и условий механизации технологических процессов.
При использовании средств механизации в виде подъемников, тельферов и кранов малой грузоподъемности широко применяются балочные системы с заполнением керамзитобетонными пустотелыми балками (рис. 7.1).
Рис. 7.1. Сборные и сборно-монолитные перекрытия из мелкоразмерных блоков по балкам
а -сборное перекрытие из керамических блоков по стальным балкам; б - сборно-монолитное перекрытие из керамических блоков «Симплекс»; в - сборное перекрытие по железобетонным тавровым балкам с заполнением керамзитобетонными блоками; г - сборно-монолитное перекрытие системы Omnia (Великобритания): 1 - балки; 2 - блоки и вкладыши; 3 - монолитный участок; 4 - арматурный каркас; 5 - арматурная сетка; 6 - поддерживающие балки;7 - телескопические стойки
Основные нагрузки воспринимаются балками, которые располагаются с шагом, соответствующим ширине проемов, а их концы заделываются в несущие стены. Используются металлические балки в виде двутавров, таврового и прямоугольного сечений из преднапряженного железобетона или монолитные балки, образуемые пространством между продольными рядами блоков, устанавливаемых на временные поддерживающие балки и телескопические стойки.
После установки в проектное положение блоков их наружная поверхность омоноличивается легкобетонной смесью с предварительным сетчатым армированием.
Источник:http://www.znaytovar.ru/gost/2/Rekonstrukciya_zhilyx_zdanij_C.html
Рис. 6.49. Конструктивно-технологические решения включения в совместную работу железобетонных плит перекрытия
а - усиление анкеровки железобетонных плит; б - установка анкерных связей в виде стержней; в - то же, армокаркасами; г - устройство обвязочного монолитного пояса; д , е -устройство шпонок и железобетонного наращивания
Совместная работа плит перекрытий позволяет перераспределить постоянные и временные нагрузки, снизить величину прогибов и исключить случаи нарушения сцепления материала шва между плитами.
Усиление конструкций композитными материалами из углеродных волокон
Данный метод является наиболее прогрессивным, менее трудоемким и более надежным. Его использование достаточно универсально, не вызывает дополнительных нагрузок.
Углеродные композитные материалы обладают высокой прочностью на растяжение, модулем линейной упругости, коррозийной стойкостью.
Они успешно используются при выполнении ремонтно-восстановительных работ с целью повышения несущей способности различных конструктивных элементов колонн, балок, плит перекрытий, выполненных из железобетона, металла, кирпича, дерева и др. материалов.
Разработаны три типа графитопластиковых лент с расчетным сопротивлением растяжению 2800, 2400 и 1300 МПа.
Ленты поставляются в бухтах с общей длиной до 250 м, шириной от 50 до 120 мм и толщиной 1,2-1,4 мм.
Основной способ усиления состоит в наклейке лент или полотнищ из углеродистых волокон на усиливаемые конструкции (рис. 6.50). В качестве клеящего материала используют специальные составы эпоксидных клеев, а также ремонтные растворы. Качество усиления конструктивных элементов зависит от подготовки основания и соблюдения технологического регламента.
Рис. 6.50. Усиление несущих конструкций композитными материалами в виде лент из углеродистых волокон
а -колонн; 6 - балок; в - плит перекрытий; г - графики набора прочности клея на сжатие ( I) и растяжение ( II ); 1 - наклеиваемые ленты; 2 - защитные покрытия
Основание усиливаемой конструкции должно быть ровным, обезжиренным, обеспыленным и чистым. При наличии раковин и выколов основание шпатлюется ремонтным полимерным раствором.
Технология производства работ состоит в нанесении на подготовленную поверхность и ленту клеящего состава толщиной прослойки в пределах 3-5 мм. Затем осуществляется наклейка ленты с прижатием с помощью ролика таким образом, чтобы избыток клеящей массы был выдавлен за пределы кромок.
Усиление колонн цилиндрической или прямоугольной формы осуществляется наклейкой ленты с расположением по спирали с расчетным шагом, а также путем наклейки полотнищ по периметру колонн.
Балочные конструкции получают дополнительное усиление путем размещения лент в растянутой зоне, а для восприятия поперечных сил - по периметру. Плиты перекрытия могут усиливаться путем наклейки лент в продольном и поперечном направлениях. При усилении конструкций целесообразно осуществлять небольшую тепловую обработку составов. Это позволяет за 8-12 ч достигать требуемой адгезии с поверхностью усиливаемой конструкции.
Простота технологии наклейки, малая масса и коррозионная стойкость позволяют широко использовать данную технологию для усиления конструкций реконструируемых зданий при наличии дефектов, трещинообразования, а также при возросших нагрузках.