Интегралы от экспоненты, умноженной на многочлен

Интегрирование по частям. Примеры решений

Итак, научимся интегрировать по частям. Для эффективного изучения темы необходимо хорошо ориентироваться в материалах двух вышеуказанных уроков. Под рукой должны быть: Таблица интегралов и Таблица производных. Материал будет изложен последовательно, просто и доступно, и в интегрировании по частям у вас в дальнейшем не будет особых трудностей.

Какую задачу решает метод интегрирования по частям? Метод интегрирования по частям решает очень важную задачу, он позволяет интегрировать некоторые функции, отсутствующие в таблице, произведение функций, а в ряде случаев – и частное.

По частям берутся интегралы следующих видов:

1) , , – логарифм, логарифм, умноженный на какой-нибудь многочлен.

2) , – экспоненциальная функция, умноженная на какой-нибудь многочлен. Сюда же можно отнести интегралы вроде – показательная функция, умноженная на многочлен, но на практике под интегралом чаще встречается буква «е».

3) , , – тригонометрические функции, умноженные на многочлен.

4) , – обратные тригонометрические функции, умноженные на многочлен.

Также по частям берутся некоторые дроби, соответствующие примеры мы тоже подробно рассмотрим.

Интегралы от логарифмов

Пример 1

Найти неопределенный интеграл.

Решение:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

 

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере
(и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

 

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

 

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрировать правую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: . Вот образец чистового решения с небольшими пометками:

Интегрируем по частям:

 

(*)=

 

Как видите, применение формулы интегрирования по частям, свело наше решение к двум простым интегралам.

 

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

 

Пример 2

Найти неопределенный интеграл.

Подынтегральная функция представляет собой произведение логарифма на многочлен.

Решение:

Еще один раз подробно распишем порядок применения правила, в дальнейшем примеры будут оформляться более кратко, и, если у Вас возникнут трудности в самостоятельном решении, нужно вернуться обратно к первым двум примерам.

Как уже говорилось, за необходимо обозначить логарифм (то, что он в степени – значения не имеет). За обозначаем оставшуюся часть подынтегрального выражения.

Записываем в столбик:

Сначала находим дифференциал :

Теперь находим функцию , для этого интегрируем правую часть нижнего равенства :

Для интегрирования мы применили простейшую табличную формулу

Теперь всё готово для применения формулы . Открываем «звёздочкой» и «конструируем» решение в соответствии с правой частью :

Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за в похожих ситуациях всегда обозначается логарифм.

(1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке , и эти скобки нужно корректно раскрыть.

(2) Раскрываем скобки. Последний интеграл упрощаем.

(3) Берем последний интеграл.

(4) «Причесываем» ответ.

Необходимость дважды (а то и трижды) применять правило интегрирования по частям возникает не так уж и редко.

А сейчас пара примеров для самостоятельного решения:

Пример 3

Найти неопределенный интеграл.

,

Это примеры для самостоятельного решения.

Вроде бы в примере подынтегральные функции похожи, а вот методы решения – разные! В этом-то и состоит основная трудность освоения интегралов – если неправильно подобрать метод решения интеграла, то возиться с ним можно часами, как с самой настоящей головоломкой. Поэтому чем больше вы прорешаете различных интегралов – тем лучше, тем легче пройдут зачет и экзамен.

Интегралы от экспоненты, умноженной на многочлен

Общее правило: за всегда обозначается многочлен

Пример 4

Найти неопределенный интеграл.

Решение:

Используя знакомый алгоритм, интегрируем по частям:

Если возникли трудности с интегралом , то следует вернуться к теме «Метод замены переменной в неопределенном интеграле».

Преобразуем ответ:

 

Пример считается решенным, когда взят последний интеграл. Не преобразованный ответ ошибкой не будет.

Пример 5

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Данный интеграл дважды интегрируется по частям. Особое внимание следует обратить на знаки – здесь легко в них запутаться, также помним, что – сложная функция.

 

Это основные сведения про экспоненту. Не забывайте, что экспонента и натуральный логарифм взаимно-обратные функции.