Источники и виды ионизирующих излучений при применении ядерного оружия
По происхождению источники ИИ подразделяются на естественные и искусственные. В промышленно развитых странах от естественных источников население получает около 2/3 суммарной дозы облучения. Медицинские процедуры (лучевая диагностика и лучевая терапия) обусловливают около трети этой дозы, а вклад в нее атомной энергетики, других мирных форм применения источников ИИ и испытаний ядерного оружия пренебрежимо мал
Совокупность потоков ИИ, происходящих из естественных источников, называется природным радиационным фоном Земли.
Извне на организм воздействует в основном у-излучение, источником которого преимущественно являются радиоактивные вещества, присутствующие в земной коре. В каменных зданиях интенсивность внешнего у-облучения в несколько раз ниже, чем на открытой местности, что объясняется экранирующими свойствами конструкционных материалов.
Искусственные (техногенные) источники ИИ включают в себя рентгеновские трубки, ускорители заряженных частиц, а также устройства, содержащие радионуклиды. Последняя группа подразделяется на открытые (имеющие непосредственный контакт с атмосферой) и закрытые (заключенные в герметичную оболочку) источники ИИ. Они являются конструктивными элементами у-терапевтических установок, дефектоскопов, атомных реакторов, а также некоторых дозиметрических и радиометрических приборов.
Источниками слабого рентгеновского излучения могут служить радиолампы и электронно-лучевые трубки, широко представленные в производственной и бытовой технике.
Основной вклад в дозу, получаемую человеком от искусственных источников ИИ, в настоящее время вносят лечебные и диагностические процедуры. Лучевая нагрузка при некоторых из них указана в табл. 65. В экономически развитых странах дозы облучения населения с медицинскими целями втрое выше, чем в мире в среднем.
Таблица 65
Ориентировочные значения поглощенной дозы излучения при некоторых медицинских процедурах
Медицинская процедура | Доза излучения, сГр |
Рентгенография грудной клетки | |
Флюорография грудной клетки | |
Рентгеноскопия грудной клетки | 5-10 |
Рентгеноскопия брюшной полости | 10-20 |
Лечение злокачественных опухолей | 2000-10 000 |
Источники ИИ, наиболее актуальные в военное время. В случае применения ядерного оружия или крупномасштабных аварий на объектах ядер-ной энергетики ожидается многократное возрастание интенсивности лучевых воздействий на организм. Основными радиационными факторами ядерного взрыва являются проникающая радиация и радиоактивное заражение местности (РЗМ).
4.РАДИОБИОЛОГИЧЕСКИЕ ЭФФЕКТЫ
Радиобиологическими эффектами называются изменения, возникающие в биологических системах при действии на них ИИ. Сложность организма как биологической системы предопределяет многообразие радиобиологических эффектов. Критериями их классификации служат уровень формирования, сроки появления, локализация, характер связи с дозой облучения, значение для судьбы облученного организма, возможность передачи по наследству последующим поколениям и др.
Классификация радиобиологических эффектов
Уровень формирования
На молекулярном уровне облучение биосистем вызывает набор характерных изменений, обусловленных взаимодействием биомолекул с самим излучением либо продуктами радиолиза воды. К таким изменениям относят разрывы, сшивки, изменения последовательности мономеров в молекулах биополимеров, потерю ими фрагментов, окислительную модификацию, образование аномальных химических связей с другими молекулами.. Во время митоза повреждения ДНК в клетке проявляются хромосомными аберрациями, основными видами которых являются фрагментация хромосом, формирование хромосомных мостов, дицентриков, кольцевых хромосом, внутри- и межхромосомных обменов и т. п. Однако многие клетки погибают после облучения еще до митоза, а следовательно, и до появления хромосомных аберраций.
На клеточном уровне воздействие ИИ вызывает интерфазную или репродуктивную гибель клеток, временный блок митозов и нелетальные мутации.
Действие ИИ на системном уровне характеризуется цитопеническим эффектом, в основе которого лежат, преимущественно, гибель клеток и радиационный блок митозов.
Радиобиологические эффекты, возникающие на уровне организма и популяции, классифицируются в соответствии с критериями, перечисленными ниже.
Сроки появления
По этому признаку радиобиологические эффекты, возникающие в организме и популяции, принято подразделять на ближайшие и отдаленные. Ближайшие эффекты проявляются в сроки до нескольких месяцев после облучения и связаны с развитием цитопенических состояний в различных тканевых системах организма. Примерами ближайших эффектов облучения могут быть острая лучевая реакция, острая лучевая болезнь, лучевая алопеция, лучевой дерматит.
Отдаленные эффекты возникают спустя годы после облучения, на фоне полной регрессии основных клинических проявлений острого поражения. Примерами отдаленных последствий облучения являются опухоли, гемобластозы, гипопластические, дистрофические, склеротические процессы. Интегральным проявлением этих последствий служит сокращение продолжительности жизни организмов, перенесших острое лучевое поражение.
Локализация
Радиобиологические эффекты могут быть классифицированы в зависимости от органа или части тела, в которых они регистрируются. При локальном облучении органа или сегмента тела наиболее сильное поражающее действие ИИ проявляется именно в нем (такой эффект называют местным действием ИИ). Однако изменения возникают и в необлученных тканях. В последнем случае говорят о дистанционном действии ИИ. Его примером может служить уменьшение числа миелокариоцитов в костном мозге экранированной конечности после облучения животных. Данный
Местное действие ИИ имеет решающее значение для возникновения не только ближайших, но и отдаленных радиобиологических эффектов.
Характер связи с дозой облучения
По данному критерию радиобиологические эффекты четко разграничены на стохастические (вероятностные) и нестохастические (детерминированные).
Признаками стохастического эффекта являются (1) беспороговость и (2) альтернативный характер. Беспороговость стохастических эффектов означает, что сколь угодно малые дозы облучения способны влиять на частоту их возникновения. Альтернативный характер проявляется в том, что стохастические эффекты, подчиняясь закону «все или ничего», не могут быть охарактеризованы таким показателем, как «выраженность». Примером стохастического эффекта облучения на клеточном уровне может служить гибель клетки; на уровне целостного организма — возникновение злокачественной опухоли. Признаками нестохастического эффекта являются (1) пороговый характер и (2) градиентная связь амплитуды с дозой облучения. Если доза облучения превышает пороговую величину (Дп), то нестохастический эффект возникает со 100% вероятностью, причем его амплитуда монотонно возрастает с увеличением дозы (
Знание дозовых «порогов» нестохастических эффектов*(т. е. минимальных значений вызывающих их доз) весьма важно для диагностики и профилактики лучевых поражений. В табл. 67 представлены минимальные величины доз ИИ, вызывающих некоторые из нестохастических эффектов облучения организма человека.