Информационно-измерительные системы

В настоящее время в измерительной технике получили распространение многофункциональные многоканальные автоматизированные устройства, названные информационно-измерительными системами (ИИС), предназначенные для автоматического сбора, отработки и выдачи по заданной программе информации, поступающей от многих источников. При проектировании ИИС пользуются принципом агрегатно-модульного построения системы, состоящей из ограниченного набора унифицированных блоков и модулей, выпускаемых промышленностью и входящих в государственную систему приборов (ГСП). Такое построение обеспечивает метрологическую, информационную, конструктивную и эксплуатационную совместимость отдельных модулей и блоков для получения информации и ее преобразования, хранения и выдачи в требуемом виде на печать.

Первичные преобразователи представляют собой линейную механическую систему, способную воспринимать значения измеряемой величины (перемещения, ускорения, усилия и др.) и преобразовывать их в относительные перемещения или деформации собственных упругих элементов.

Измерение различных параметров и откликов при испытании строительных конструкций производится на практике с помощью электрических преобразователей или датчиков с электрическими преобразователями, отличающимися исключительной универсальностью.

С помощью электрических датчиков измеряют деформации, перемещения, усилия, ускорения. Они могут применяться как в лабораторных условиях, так и в условиях натурного эксперимента, как при статическом, так и при динамическом воздействии. При этом выходной сигнал электрических преобразователей удобен для последующего преобразования (усиления, интегрирования) и дистанционной передачи и регистрации.

22.Неразрушающие методы испытаний. Общие сведения.

В настоящее время неразрушающие методы широко используются для контроля и обеспечения качественного технологического процесса в целом ряде отраслей народного хозяйства: металлургии, машиностроении, химической промышленности и т.п. В сочетании с быстродействующими вычислительными устройствами применение неразрушающих методов дает возможность перейти к полной автоматизации производства с обеспечени­ем необходимого соблюдения качества продукции.

В строительном деле неразрушающие методы применяются глав­ным образом для контроля сварных металлоконструкций, при изготовлении железобетонных деталей и элементов и т. д. Неразрушающие методы кон­троля применяются и при освидетельствовании сооружений. Они являются весьма перспективными для контроля на поточных линиях на заводах строительных конструкций (в первую очередь железобетонных) не только для выявления уже допущенных дефектов и отступления от требований ТУ, но и, прежде всего, для предупреждения самой возможности таких нару­шений.

По физическим принципам неразрушающих исследований раз­личают следующие основные методы:

при помощи проникающих сред (жидких, газообразных и др.)

механические методы испытаний;

акустические (ультразвуковые и более низких частот);

магнитные, электромагнитные и электрические;

при помощи ионизирующих излучений (рентгеновские, радио- изотопные и др.);

радиодефектоскопия и инфракрасная дефектоскопия.

Методы проникающих сред

В резервуарах, газгольдерах, трубопроводах и других аналогичных конструкциях, требующих обеспечения не только прочности, но и плотно­сти соединений, контроль осуществляют с помощью проникающих сред. Кроме применявшихся ранее испытаний водой и керосином, в настоящее время разработаны и другие приемы.

Испытания водой. Проверяемые емкости заполняются водой до отметки обычно несколько выше эксплуатационной. В закрытых сосудах давление жидкости повышается дополнительным нагнетанием воды или воздуха.

Гидростатическим давлением проверяются как плотность, так и прочность соединений и всего сооружения в целом. Контроль швов и соединений заливкой воды совмещается, таким образом, со статически/л испытанием исследуемой емкости.

Отдельные швы металлоконструкций могут проверяться сильной струёй воды из брандспойта, направленной под давлением примерно 1 атм нормально к поверхности шва. При наличии дефектов вода просачивается сквозь неплотности проверяемого соединения.

Проба керосином. Благодаря своей малой вязкости и незначитель­ному, по сравнению с водой, поверхностному натяжению керосин легко проникает через самые малые поры и выступает на противоположной по­верхности. При опробовании поверхность шва с одной стороны обильно смачивается или опрыскивается керосином. Для облегчения наблюдений шов заранее подбеливается водным раствором мела. На этом подсохшем светлом фоне отчетливо выявляются затем ржавые пятна и полосы, возни­кающие при просачивании керосина.

Проба сжатым воздухом. При наиболее простом применении дан­ного метода проверяемые швы обмазываются мыльной водой. С другой стороны шов обдувается сжатым воздухом, подаваемым из шланга под давлением порядка 4атм нормально к исследуемому шву. В замкнутые емкости сжатый воздух подается внутрь их объема. Признаком дефектно­сти шва служит появление мыльных пузырей на обмазке.

Более совершенным является применение ультразвуковых “течеискателей”, принцип работы которых основан на регистрации ультразвуко­вых колебаний, возникающих в местах нарушения сплошности под дейст­вием вытекающей здесь под давлением струи газа (воздуха). С помощью течеискателей можно выявлять неплотности размером до 0,1лш при избы­точном давлении порядка 0,4атм. Место нахождения дефекта определяется с точностью до 1,5-2см.

Проба вакуумом. Проверка вакуумом требует доступа к конст­рукции лишь с одной ее стороны, что является существенным пре­имуществом данного метода.

К шву приставляется металлическая кассета в виде плоской короб­ки без дна с прозрачным верхом, через который виден проверяемый шов. Вакуум-насосом со шлангом, присоединенным к кассете, в которой созда­ется небольшое разрежение, внешним воздушным давлением стенки кассе­ты, снабженные по их нижнему периметру мягкой резиновой прокладкой, прижимаются при этом к конструкции. Исследуемый шов предварительно должен Сыть смочен мыльным раствором. В местах нарушений плотности шва воздух, проникая сквозь эти неплотности, образует в мыльной пене отчетливо видные стойкие пузыри.

При сварке сосудов высокого давления и других особо ответствен­ных, требующих полной герметичности, конструкций для увеличения на­дежности конгроля применяется проверка плотности соединений химиче­скими реагентами, например, воздушно-аммиачной смесью или другими газообразными соединениями, обладающими высокой проникающей спо­собностью. Химические методы проверки плотности соединений обладают большой чувствительностью и дают возможность очень четко определять места нахождения дефектов, чем и обусловливается в наиболее серьезных случаях целесообразность применения этих более сложных приемов.

 

24.Механические методы испытаний

Рассматриваемые методы привнесены в область строительства из металловедения. Как известно, при испытаниях металла широко применяются так называемые “пробы на твердость”. К ним относятся испытания путем вдавливания в поверхность металла стального шарика или алмаза (по Бринеллю, Роквеллу, Виккерсу и т.д.), измерения по упругому отскоку падающего шарика (испытания по Шору) и др.

Благодаря своей простоте, удобству и возможности быстрой про­верки состояния материала в целом ряде точек на поверхности конструк­ций эти косвенные методы нашли применение и при освидетельствовании сооружений. Полученные при этом данные переводятся в прочностные ха­рактеристики исследуемого материала по эмпирическим формулам или с применением соответствующих графиков и таблиц.

Следует при этом иметь в виду, что само понятие “твердость” не является столь же определенным физическим критерием сопротивления материала силовым воздействиям как прочность, деформатигшость и т.д. В зависимости от вида испытания на твердость выявляются различные фак­торы: в методе отскока (по Шору) - способность к упругой работе при на­личии поглощения части энергии деформирования; при вдавливании шари­ка по Бринеллю - пластические свойства на уровне предела текучести; при вдавливании алмаза - сопротивление значительному деформированию (на )ровне предела прочности) и т. д.

 

21.Тарирование измерительной аппаратуры и приборов

Для определения основных характеристик измерительных уст­ройств проводят их тарировочные испытания. При проведении таких испы­таний используют градуировочные установки, обеспечивающие воспроиз­ведение заданных действительных значений измеряемой величины. Для каждой из определяемых характеристик разрабатывают схему градуировки, которая включает оценку коэффициентов влияния различных факторов: температуры, влажности, магнитных полей и др. На основе полученных данных определяется схема анализа погрешностей.

Полученные результаты обрабатываются статистическими метода­ми. Установленные для испытанной выборки средние значения характерис­тик тензорезисторов и средние квадратические отклонения от этих значе­ний, а также аппроксимированные функции влияния температуры, влажно­сти и других факторов присваивают всей партии тензорезисторов.

В качестве эталонного упругого элемента, обеспечивающего де­формирование тензорезисторов, рекомендуется использовать балку равного сопротивления (рис.2.36) или постоянного сечения, нагруженную в преде­лах рабочего участка моментом.

Деформацию рабочей зоны балки принимают за действительную величину. Тензорезисторы устанавливают вдоль оси балки на растянутую или сжатую поверхность; при нагружении балки измеряют стрелу

 

Рис. 2.36. Схема тарировочного устройства с балкой равного сопротивления

выгиба балки и вычисляют относительную фибровую деформацию поверхностных волокон балки соответственно для консольной балки равного сопротивле­ния по формуле:

 

где f- мах прогиб балки консольного типа в месте приложения нагрузки;

S - толщина балки, м;

l - дпина балки, см, а для балки постоянного сечения (рис.2.37) - с использованием формулы:


где f- выгиб балки в пределах пролета балки, равного 10 . S- толщина балки, см.

 

Рабочая зона наклейки тензомеров

Рис. 2.37. Схема гарировочного устройства с балкой равного ссчсния

 

 

На градуировочном устройстве определяют статическую характеристику преобразования, механический гистерезис, ползучесть, функцию влияния температуры на чувствительность тензорезисторов. Усталостная характеристика тензорезистора может быть определена с использованием установки, схема котороч показана на рис.2.38.

Перемещение свободного конца консольной градуировочной балки с тензорезисторами осуществляется качающейся кулисой, которая последняя приводится в движение кривошипным механизмом. Амплитуду колебаний балки и, следовательно, деформацию ее поверхности регу­лируют изменением плеча кривошипного механизма.

При смещении по вертикали опоры можно варьировать и коэффициент асимметрии цикла. Число циклов деформирования регистрируется счетчиком.

Рис.2.38. Схема устройства для градуировки тензорезисторов

при циклической нагрузке:

1 - градуировочная балка; 2 - тензорезисторы: 3 - кулиса;

4 - кривошипный механизм; 5 - опора

 

При определении усталостной характеристики циклическое деформирование производят при нескольких уровнях амплитуды и фиксируют число циклов, при котором происходит отказ тензорезисторов. Поскольку в процессе циклического деформирования накапливаются усталостные повреждения в материале чувствительного элемента, а также происходит расстройство адгезионных связей в связующем слое, то постепенно начинает проявляйся эффект ухода нуля, т. е. изменение соп­ротивления тензорезисторов при нулевой или постоянной средней деформа­ции.

Признаком отказа тензорезистора в этом случае является не обрыв чувствительного элемента, а достижение заданного уровня относительного смещения нуля, например, 0,005-0,01%.

 

22.Неразрушающие методы испытаний. Общие сведения.

В настоящее время неразрушающие методы широко используются для контроля и обеспечения качественного технологического процесса в целом ряде отраслей народного хозяйства: металлургии, машиностроении, химической промышленности и т.п. В сочетании с быстродействующими вычислительными устройствами применение неразрушающих методов дает возможность перейти к полной автоматизации производства с обеспечени­ем необходимого соблюдения качества продукции.

В строительном деле неразрушающие методы применяются глав­ным образом для контроля сварных металлоконструкций, при изготовлении железобетонных деталей и элементов и т. д. Неразрушающие методы кон­троля применяются и при освидетельствовании сооружений. Они являются весьма перспективными для контроля на поточных линиях на заводах строительных конструкций (в первую очередь железобетонных) не только для выявления уже допущенных дефектов и отступления от требований ТУ, но и, прежде всего, для предупреждения самой возможности таких нару­шений.

По физическим принципам неразрушающих исследований раз­личают следующие основные методы:

при помощи проникающих сред (жидких, газообразных и др.)

механические методы испытаний;

акустические (ультразвуковые и более низких частот);

магнитные, электромагнитные и электрические;

при помощи ионизирующих излучений (рентгеновские, радио- изотопные и др.);

радиодефектоскопия и инфракрасная дефектоскопия.

Методы проникающих сред

В резервуарах, газгольдерах, трубопроводах и других аналогичных конструкциях, требующих обеспечения не только прочности, но и плотно­сти соединений, контроль осуществляют с помощью проникающих сред. Кроме применявшихся ранее испытаний водой и керосином, в настоящее время разработаны и другие приемы.

Испытания водой. Проверяемые емкости заполняются водой до отметки обычно несколько выше эксплуатационной. В закрытых сосудах давление жидкости повышается дополнительным нагнетанием воды или воздуха.

Гидростатическим давлением проверяются как плотность, так и прочность соединений и всего сооружения в целом. Контроль швов и соединений заливкой воды совмещается, таким образом, со статически/л испытанием исследуемой емкости.

Отдельные швы металлоконструкций могут проверяться сильной струёй воды из брандспойта, направленной под давлением примерно 1 атм нормально к поверхности шва. При наличии дефектов вода просачивается сквозь неплотности проверяемого соединения.

Проба керосином. Благодаря своей малой вязкости и незначитель­ному, по сравнению с водой, поверхностному натяжению керосин легко проникает через самые малые поры и выступает на противоположной по­верхности. При опробовании поверхность шва с одной стороны обильно смачивается или опрыскивается керосином. Для облегчения наблюдений шов заранее подбеливается водным раствором мела. На этом подсохшем светлом фоне отчетливо выявляются затем ржавые пятна и полосы, возни­кающие при просачивании керосина.

Проба сжатым воздухом. При наиболее простом применении дан­ного метода проверяемые швы обмазываются мыльной водой. С другой стороны шов обдувается сжатым воздухом, подаваемым из шланга под давлением порядка 4атм нормально к исследуемому шву. В замкнутые емкости сжатый воздух подается внутрь их объема. Признаком дефектно­сти шва служит появление мыльных пузырей на обмазке.

Более совершенным является применение ультразвуковых “течеискателей”, принцип работы которых основан на регистрации ультразвуко­вых колебаний, возникающих в местах нарушения сплошности под дейст­вием вытекающей здесь под давлением струи газа (воздуха). С помощью течеискателей можно выявлять неплотности размером до 0,1лш при избы­точном давлении порядка 0,4атм. Место нахождения дефекта определяется с точностью до 1,5-2см.

Проба вакуумом. Проверка вакуумом требует доступа к конст­рукции лишь с одной ее стороны, что является существенным пре­имуществом данного метода.

К шву приставляется металлическая кассета в виде плоской короб­ки без дна с прозрачным верхом, через который виден проверяемый шов. Вакуум-насосом со шлангом, присоединенным к кассете, в которой созда­ется небольшое разрежение, внешним воздушным давлением стенки кассе­ты, снабженные по их нижнему периметру мягкой резиновой прокладкой, прижимаются при этом к конструкции. Исследуемый шов предварительно должен Сыть смочен мыльным раствором. В местах нарушений плотности шва воздух, проникая сквозь эти неплотности, образует в мыльной пене отчетливо видные стойкие пузыри.

При сварке сосудов высокого давления и других особо ответствен­ных, требующих полной герметичности, конструкций для увеличения на­дежности конгроля применяется проверка плотности соединений химиче­скими реагентами, например, воздушно-аммиачной смесью или другими газообразными соединениями, обладающими высокой проникающей спо­собностью. Химические методы проверки плотности соединений обладают большой чувствительностью и дают возможность очень четко определять места нахождения дефектов, чем и обусловливается в наиболее серьезных случаях целесообразность применения этих более сложных приемов.

 

24.Механические методы испытаний

Рассматриваемые методы привнесены в область строительства из металловедения. Как известно, при испытаниях металла широко применяются так называемые “пробы на твердость”. К ним относятся испытания путем вдавливания в поверхность металла стального шарика или алмаза (по Бринеллю, Роквеллу, Виккерсу и т.д.), измерения по упругому отскоку падающего шарика (испытания по Шору) и др.

Благодаря своей простоте, удобству и возможности быстрой про­верки состояния материала в целом ряде точек на поверхности конструк­ций эти косвенные методы нашли применение и при освидетельствовании сооружений. Полученные при этом данные переводятся в прочностные ха­рактеристики исследуемого материала по эмпирическим формулам или с применением соответствующих графиков и таблиц.

Следует при этом иметь в виду, что само понятие “твердость” не является столь же определенным физическим критерием сопротивления материала силовым воздействиям как прочность, деформатигшость и т.д. В зависимости от вида испытания на твердость выявляются различные фак­торы: в методе отскока (по Шору) - способность к упругой работе при на­личии поглощения части энергии деформирования; при вдавливании шари­ка по Бринеллю - пластические свойства на уровне предела текучести; при вдавливании алмаза - сопротивление значительному деформированию (на )ровне предела прочности) и т. д.

Оценка прочности металла

Наибольшее применение в строительной практике для оценки прочности металла имеет прибор Польди (рис.3.1) ударного действия.

Наконечником прибора является шарик 2 диаметром 10 мм из твердой закаленной стали, дающий при ударе отпечаток одновременно на исследуемом металле 1 и на стальном эталонном бруске 3, твердость которого НВэт должна быть заранее определена. Для получения отпечатков ударяют молотком по верхнему торцу стержня 4.

Твердость НВ исследуемого металла испытываемой конструкции определится из соотношения:

 

где D - диаметр стального шарика 2 (рис.3.2);

d - диаметр отпечатка на поверхности исследуемого материала;

dэт - то же, на эталонном бруске.

 

Рис. 3.1 Схема прибора Польди:

1 - исследуемый материал;

2 - стальной шарик;

3 - эталонный брусок;

4 - ударный стержень;

5 - обойма прибор

 

Рис.3.2. Отпечатки, получаемые с помощью прибора Польди:

1 - исследуемый материал;

2 - стальной шарик;

3 - эталонный брусок

 

 

Нахождение НВ и определение прочности и марки металла произ­водятся с помощью соответствующих таблиц. Для термически обработан­ных легированных сталей вводится поправочный коэффициент.

С помощью прибора Польди можно получать, однако, лишь ориен­тировочные характеристики. Но и с учетом этого применение прибора практически полезно, в особенности в следующих случаях:

- для ускоренной проверки однородности материала в различных элементах освидетельствуемых конструкций;

- при отбраковке (проверке марок металла) поступающих заготовок.

Оценка прочности бетона

При косвенной оценке прочности бетона по твердостным характе­ристикам его поверхностного слоя приходится учитывать следующие факторы, усложняющие эту оценку:

1) большой разброс результатов испытаний на "твердость", обу­словленный неоднородностью структуры бетона. Для получения надежных данных необходимо увеличить число проверяемых на поверхности точек и статистически обработать результаты испытаний;

2) возможная карбонизация поверхностного слоя, повышающая показатели твердости, а также увлажнение поверхности, снижающее эти показатели;

3) возможность расхождения прочностных характеристик на по­верхности и в глубине массивных блоков. Это может быть проверено, на­пример, контрольным бурением с выемкой образцов с разной глубины, а также применением рассматриваемых далее неразрушающих способов.

Необходимость в простых, доступных для массового применения способов оценки качества бетона настолько настоятельна, что, несмотря на указанные затруднения, для суждения о прочности бетона по механическим характеристикам его поверхностного слоя предложен целый ряд приборов и приспособлений. Краткий обзор практически наиболее оправдавших себя и методически интересных приемов приводится ниже.

Оценка прочности бетона с помощью молотка К. П. Кашкарова. Эталонный молоток К.П. Кашкарова схематически показан на рис. 3.3. Принцип его действия аналогичен рассмотренному выше прибору Польди с той разницей, что удар наносится взмахом самого эталонного молотка.

При ударе боек (стальной шарик диаметром 15 мм) оставляет на поверхности исследуемого бетона вмятину диаметром dб, а на эталонном стержне (круглого сечения из Ст. 3 диаметром 10 мм) - отпечаток диамет­ром dэт. Для десяти ударов, нанесенных по проверяемому элементу с удаленными штукатурными и окрасочными слоями, определяется усредненное отношение dб/dэт; прочность бетона оценивается по корреляционной зави­симости между dб/dэт и пределом прочности бетона на сжатие, устанавли­ваемой экспериментально.

Рис. 3.3. Схема молотка К. П. Кашкарова: 1 - головка; 2 - рукоятка; 3 - эталонный стержень; 4 - стальной шарик; 5 - стакан; 6 - торец стержня 3; 7 - испытуемый материал; 8 – пружина.

При этом должны учитываться конкретные условия изготовления конструкции и твердения бетона, сроки испытаний, ше­роховатость, влажность и другие особенности состояния поверхности кон­струкции. Для эксплуатируемых сооружений указанная зависимость долж­на быть уточнена на образцах, выбуренных из соответствующих элементов.

Эталонный молоток рекомендуется для разных операций: оценок отпускной прочности бетонных изделий на заводах железобетонных конст­рукций, прочности бетона при передаче напряжения от арматуры на бетон в предварительно напряженных железобетонных конструкциях, коэффици­ента изменчивости прочности бетона в изделиях и конструкциях (что осо­бенно существенно при освидетельствованиях сооружений) и т. д.

Одним из наиболее простых приспособлений для сравнительной оценки прочности бетона является молоток И. Л. Физделя. Ударная часть этого стального молотка весом 250 г заканчивается шариком из твердой стали, легко вращающимся в гнезде. По диаметру отпечатков, полученных при ударе, определяют прочность бетона по эмпирическому графику. Ре­зультаты, несмотря на их ориентировочность, все же полезны в производ­ственных условиях. Пользование молотком при некотором навыке не вы­зывает затруднений.

Из приборов более сложной конструкции, предназначенных для получения ударных отпечатков на поверхности бетона, следует отметить прибор СоюздорНИИ (Е. Е. Гибшмана и В. Г. Донченко), аналогичный по принципу действия рассмотренному выше ударнику Польди для металла, прибор A.M. Губбера, ударяющий по увлажненной поверхности бетона кромкой стального диска. Эти приборы широкого применения не получили.

В Германии серийно выпускается и стандартизирован (ДИН-424а) прибор с пружиной, передающей при спуске удар заданной силы на шари­ковый наконечник, оставляющий отпечаток на бетоне.

Оценка прочности бетона склерометром. Приборы этого типа применяются главным образом за рубежом. Из их числа наиболее известен прибор Шмидта (Швейцария).

В этих приборах, так же как в ударнике Шора для металла, о ха­рактеристиках материала судят по величине отскока стального бойка. От­скок фиксируется указателем на шкале. Удар наносится не непосредствен­но по исследуемой поверхности бетона, а воспринимается наконечником прибора, прижатого к конструкции. Этот промежуточный стальной элемент необходим, поскольку величина отскока при резкой разнице модулей упру­гости соударяемых материалов становится трудносопоставимой. Удар осуществляется спуском пружины, а не свободным падением бойка, как у Шора, что позволяет испытывать любым образом ориентированные по­верхности. Прибор удобен в работе и дает довольно четкие результаты.

Ударники Шмидта применяются у нас почти исключительно в транспортном строительстве при освидетельствовании железобетонных мостов. Имеются несколько измененные конструкции прибора. Предложен также прибор, действующий по принципу отскока падающего стального маятника.

Способ стрельбы. Данный способ является своеобразным вариан­том динамических оценок прочности материала. В 1933 г. Б.Г. Скрамтаевым была предложена оценка качества бетона по объему лунки, выбивае­мой в нем револьверной пулей. Выстрел из "нагана" производится с рас­стояния 6-8 м от конструкции перпендикулярно ее поверхности с огражде­нием стреляющего от осколков и возможного рикошета. Объем образовав­шихся лунок определяется измерением или, что более точно, по объему замазки, расходуемой на заполнение выбоин. Разброс получаемых резуль­татов, однако, является значительным.

Дальнейшим развитием метода было предложенное несколько позднее Ф.Ф. Поляковым специально сконструированное ружье с подстав­кой, приставляемой к поверхности элемента. При выстреле в бетон входил стальной ударник, глубина погружения которого и служила показателем прочности материала. Способ стрельбы нашел практическое применение в испытаниях деревянных конструкций.

Оценка прочности бетона по отпечатку при статическом воз­действии. Из числа предложений, основанных на статическом принципе, отметим, как наиболее характерное, устройство для вдавливания штампов, разработанное Г. К. Хайдуковым, А.И. Годером и Д.М. Рачевским. В зави­симости от марки бетона берутся сферы радиусом 24, 14 и 10 см и гидрав­лическим домкратом создается усилие 2400, 2000 и 2200 кгс соответствен­но. Конец стального поршня домкрата, служащий штампом, обработан по сферической поверхности заданного диаметра. Для замера отпечатка на бетоне под поршнем укладывают по листу белой и копировальной бумаги. Для крепления всего устройства на исследуемом элементе и создания упора для домкрата имеются стальные захваты в виде массивных скоб.

Существенным преимуществом штампов большого диаметра явля­ется передача усилия более значительному объему материала, что позволя­ет судить о совместной работе всех компонентов бетона. Другие же из рас­смотренных ранее приборов (с наконечниками небольших размеров) дают в основном представление о характеристиках затвердевшего раствора между крупными включениями.

К недостаткам установки следует отнести сравнительно большой ее вес, а также возникающие в отдельных случаях трудности закрепления, ограничивающие ее применение.