Второе начало термодинамики

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов, которые могут происходить в термодинамических системах.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

10. Воздушная холодильнаяустановка была одним из первых типов холодильных установок, применяемых на практике.

На рис. 29.1 приведена принципиальная схема воздушной холодильной машины (ВХМ).

Воздух с давлением поступает в детандер 1, где адиабатно расширяется по линии 1 – 2 (Рис. 29.2) до давления и совершает при этом работу, отдаваемую детандером внешнему потребителю (например, генератору электрического тока). Расширение воздуха сопровождается понижением его температуры от Т1 до Т2. Затем он поступает в охлаждаемый объем 2 (рефрижератор), где отбирает теплоту от охлаждаемого объекта при по линии 2 – 3.

Отвод теплоты из охлаждаемого объема возможен только в том случае, если температура воздуха в течение всего изобарного процесса отбора теплоты будет меньше, чем температура охлаждаемого объема. В принципе температура воздуха на выходе из охлаждаемого объема Т3 может сравняться с температурой охлаждаемых тел. На практике же она всегда немного ниже этой температуры. (Здесь происходит повышение температуры воздуха от Т2 до Т3).

По выходе из охлаждаемого объема воздух направляется в компрессор 3 (в основном применяются турбокомпрессоры), где его давление повышается от до (при этом температура воздуха возрастает от Т3 до Т4) по адиабате 3 – 4. Сжатый компрессором воздух поступает в охладитель 4. Охладитель представляет собой теплообменник поверхностного типа, в котором температура воздуха снижается вследствие отдачи теплоты охлаждающей воде, циркулирующей через охладитель. В принципе температура воздуха на выходе из охладителя Т1 может быть сделана сколь угодно близкой к температуре охлаждающей воды, однако на практике температура воздуха всегда несколько выше температуры охлаждающей воды. Процесс в охладителе происходит при

.

Закон Фурье

явление теплопроводности обусловлено стремлением занять состояние более близкоек термодинамическому равновесию, что выражается в выравнивании температуры.

В установившемся режиме поток энергии, передающейся посредством теплопроводности, пропорционаленградиенту температуры:

где — вектор потока тепла — количество энергии, проходящей в единицу времени через единицуплощади, перпендикулярной каждой оси, коэффициент теплопроводности (иногда называемыйпросто теплопроводностью), T — температура. Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла отодной грани параллелепипеда к другой):

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепадтемператур граней, h — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Естественная конвекция

При естественной конвекции перемещение вещества происходит исключительно вследствие различия температур в различных местах среды и вызванного им различия плотностей. Свободная конвекция возникает в поле силы тяжести при неравномерном нагреве (нагреве снизу) текучих веществ.

Свободно конвективные течения возникают вследствие изменений плотности, обусловленных процессами тепло- или массообмена в поле гравитационных сил. Разность плотностей создает выталкивающую силу, под действием которой возникает течение. При охлаждении нагретого тела окружающим воздухом такое течение наблюдается в области, окружающей тело. К естественной конвекции относят также обусловленные выталкивающей силой течения при отводе теплоты в атмосферу или другую окружающую среду, циркуляцию в нагретых помещениях, в атмосфере или водоемах, течения, связанные с выталкивающей силой.

Нагретое вещество под действием Архимедовой силы перемещается относительно менее нагретого вещества в направлении, противоположном направлению силы тяжести.

Конвекция приводит к выравниванию температуры вещества.

При естественной конвекции интенсивность переноса теплоты пропорциональна разности температур DT различных частей среды, коэффициенту объемного расширения DV, напряженности силового поля g (гравитационного или сил инерции).

Естественная конвекция широко распространена в природе: в нижнем слое земной атмосферы, в океане, в недрах Земли, в звездах. Конвективные потоки приводят к возникновению таких атмосферных явлений, как ветер, ураганы, циклоны.

В условиях невесомости конвективные потоки исчезают, так как исчезает поддерживающая сила. Поэтому, например, в условиях невесомости невозможно горение (если не обеспечена искусственная тяга); продукты горения не удаляются из пламени, и оно гаснет вследствие недостатка кислорода.

13. Идеальный газ— математическая модель газа, в которой в рамках молекулярно-кинетической теории предполагается, что: 1)потенциальной энергией взаимодействия частиц, составляющих газ, можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объём частиц газа пренебрежимо мал; 3) между частицами нет дальнодействующих сил притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги; 4) время взаимодействия между частицами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц[1]. В рамках термодинамикиидеальными называются гипотетические (реально не существующие) газы, подчиняющиеся термическому уравнению состоянияКлапейрона — Менделеева[2][3][4].

14. Всего существует три простых (элементарных) механизма передачи тепла:

  • Теплопроводность
  • Конвекция
  • Тепловое излучение

15. Теплоёмкостьтела (обычно обозначается латинской буквой C) — физическая величина, определяемая отношением бесконечно малогоколичества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT[1]:

Единица измерения теплоёмкости в Международной системе единиц (СИ) — Дж/К.

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая удельная теплоёмкость (С), также называемая просто удельной теплоёмкостью — это количество теплоты, которое необходимо подвести к единице массывещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг−1·К−1).

Объёмная теплоёмкость (С′) — это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м−3·К−1).

Молярная теплоёмкость (Сμ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

16. Внутренняя энергия. Работа. Наряду с механической энергией, любое тело (или система) обладает внутренней энергией. Внутренняя энергия – энергия покоя. Она складывается из теплового хаотического движения молекул, составляющих тело, потенциальной энергии их взаимного расположения, кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах и так далее. В термодинамических процессах изменяется только кинетическая энергия движущихся молекул (тепловой энергии недостаточно, чтобы изменить строение атома, а тем более ядра). Следовательно, фактически под внутренней энергией в термодинамике подразумевают энергию теплового хаотического движения молекул.

Внутренняя энергия U одного моля идеального газа равна:

  или    

 

     

Таким образом, внутренняя энергия зависит только от температуры. Внутренняя энергия U является функцией состояния системы

Процесс передачи энергии системе от внешних тел, называют работой.

Процесс обмена внутренними энергиями соприкасающихся тел, без совершения работы, называют теплообменом.

Количество переданной энергии системе внешними телами путем теплообмена, называют теплотой (количеством теплоты ).

17. Параметры состояния – любая величина, присущая телу, изменение которой определяется только начальным и конечным состоянием тела и не зависит от характера процесса изменения его состояния, при переходе его из первого состояния во второе. Параметры можно разделить на две группы:

Интенсивные – которые не зависят от количества вещества и при взаимодейтсвии тел выравниваются (температура, давление и т.п.);

Экстенсивные – зависящие от количества вещества, следующие закону сложения или, как говорят математики, закону аддитивности (масса, обьем, внутренняя энергия и т.п.).

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

- совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) -обмениваться с ними энергией и веществом. Т. с. состоит из столь большого числа структурных частиц(атомов, молекул), что её со-стойние можно характеризовать макроскопич. параметрами: плотностью,давлением, концентрацией веществ, образующих Т. с., и т. д.

Т. с. находится в равновесии (см. Равновесие термодинамическое), если параметры системы с течениемвремени не меняются и в системе нет к.-л. стационарных потоков (теплоты, вещества и др.). Дляравновесных Т. с. вводится понятие температуры как параметра состояния, имеющего одинаковоезначение для всех макроскопич. частей системы. Число независимых параметров состояния равно числустепеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощьюуравнения состояния. Свойства равновесных Т. с. изучает термодинамика равновесных процессов(термостатика), свойства не-равновесных систем - термодинамика неравновесных процессов.

В термодинамике рассматривают: з а к р ы т ы е Т. с., не обменивающиеся веществом с др. системами;открытые системы, обменивающиеся веществом и энергией с др. системами; а д и а б а т н ы е Т. с., в к-рых отсутствует теплообмен с др. системами; и з о л и р о в а н н ы е Т. <е., не обменивающиеся с др.системами ни энергией, ни веществом. Если система не изолирована, то её состояние может изменяться;изменение состояния Т. с. наз. т е р м од и н а м и ч е с к и м п р о ц е с с о м. Т. с. может быть физическиоднородной ( гомогенной системой )и неоднородной ( гетерогенной системой), состоящей из несколькиходнородных частей с разными физ. свойствами. В результате фазовых и хим. превращений (см. Фазовыйпереход )гомогенная Т. с. может стать гетерогенной и наоборот.

19. Внутренняя энергия. Энтальпия. Внутренней энергией U называется энергия системы, зависящая только от ее термодинамического состоянии. Для системы, нe подверженной действию внешних сил и находящейся в состоянии макроскопического покоя, внутренняя энергия представляет собой полную энергию системы. В некоторых простейших случаях внутренняя энергия равна разности между полной энергией W системы и суммой кинетической энергии WK ее макроскопического движения и потенциальной энергии Wп, обусловленной действием на систему внешних силовых полей:
U = W - (Wk + Wп)

Энтальпией H (теплосодержанием, тепловой функцией) называется функция состояния термодинамической системы, равная сумме ее внутренней энергии и произведения давления на объем системы, выраженного в тех же единицах:

H = U + pV

Энтальпия идеального газа зависит только от его абсолютной температуры и пропорциональна массе газа.