Требования к оформлению контрольной работы 4 страница
и связано с угловым ускорением вала соотношением:
, (1)
где r — радиус вала.
Угловое ускорение вала выражается основным уравнением динамики вращающегося тела:
, (2)
![]() |
где М — вращающий момент, действующий на вал; J — момент инерции вала. Рассматриваем вал как однородный цилиндр. Тогда его момент инерции относительно геометрической оси равен
J=1/2m1r2.
Вращающий момент М, действующий на вал, равен произведению силы натяжения Т шнура на радиус вала: М=Тr.
Силу натяжения шнура найдем из следующих соображений. На гирю действуют две силы: сила тяжести
, направленная вниз, и сила натяжения
шнура, направленная вверх. Равнодействующая этих сил вызывает равноускоренное движение гири. По второму закону Ньютона, m2g – T=m2a, откуда T=m2(g – а). Таким образом, вращающий момент M=m2(g—а)r.
Подставив в формулу (2) полученные выражения М и J, найдем угловое ускорение вала:
Для определения линейного ускорения гири подставим это выражение в формулу (1). Получим
,
откуда
.
Пример 15. Через блок в виде диска, имеющий массу m=80 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m1=100 г и m2=200 г (рис. 11). С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.
Решение. Применим к решению задачи основные законы поступательного и вращательного движения. На каждый из движущихся грузов действуют две силы: сила тяжести , направленная вниз, и сила
натяжения нити, направленная вверх.
Так как вектор ускорения
груза m1 направлен вверх, то T1>m1g. Равнодействующая этих сил вызывает равноускоренное движение и, по второму закону Ньютона, равна T1 – т1g=т1а, откуда:
T1=m1g+m1a. (1)
Вектор ускорения груза т2 направлен вниз; следовательно, T2<m2g. Запишем формулу второго закона для этого груза:
m2g – T2=m2a, откуда
T2=m2g – m2а. (2)
Согласно основному закону динамики вращательного движения, вращающий момент М, приложенный к диску,равен произведению момента инерции J диска на его угловое ускорение
:
M=J . (3)
Определим вращающий момент. Силы натяжения нитей действуют не только на грузы, но и на диск. По третьему закону Ньютона, силы и
, приложенные к ободу диска, равны соответственно силам T1 и Т2, но по направлению им противоположны. При движении грузов диск ускоренно вращается по часовой стрелке; следовательно,
>
. Вращающий момент, приложенный к диску, равен произведению разности этих сил на плечо, равное радиусу диска, т. е. M=(
–
)r. Момент инерции диска J=mr2/2, угловое ускорение связано с линейным ускорением грузов соотношением
. Подставив в формулу (3) выражения М, J и
, получим
( –
)r =
откуда
–
=(т/2)а.
Так как =T1 и
=Т2, то можно заменить силы
и
выражениями по формулам (1) и (2), тогда:
m2g – m2a – m1g – m1a=(m/2)a, или(m2—m1) g=(m2+m1+m/2)a
откуда:
(4)
Отношение масс в правой части формулы (4) есть величина безразмерная. Поэтому значения масс m1, m2 и m можно выразить в граммах, как они даны в условии задачи. После подстановки получим:
Пример 16. Маховик в виде диска массой m=50 кг и радиусом r =20 см был раскручен до частоты вращения 1=480 мин-1 и затем предоставлен самому себе. Вследствие трения маховик остановился. Найти момент М сил трения, считая его постоянным для двух случаев: 1) маховик остановился через t=50 с; 2) маховик до полной остановки сделал N=200 оборотов.
Решение. 1.По второму закону динамики вращательного движения, изменение момента импульса вращающегося тела равно произведению момента силы, действующего на тело, на время действия этого момента:
M t=J
— J
,
где J — момент инерции маховика; и
— начальная и конечная угловые скорости. Так как
=0 и
t=t , то Mt= – J
, откуда:
M= – J /t. (1)
Момент инерции диска относительно его геометрической оси равен J=1/2mr2. Подставив это выражение в формулу (1), найдем
M= – mr2 /(2t). (2)
Выразив угловую скорость через частоту вращения
1 и произведя вычисления по формуле (2), найдем:
М= – 1 Н·м.
2. В условии задачи дано число оборотов, сделанных маховиком до остановки, т. е. его угловое перемещение. Поэтому применим формулу, выражающую связь работы с изменением кинетической энергии:
или, учтя, что ,
(3)
Работа при вращательном движении определяется по формуле A=Mj. Подставив выражения работы и момента инерции диска в формулу (3), получим:
M = – mr2
/4.
Отсюда момент силы трения:
М= – mr2 /4
. (4)
Угол поворота j=2 N=2·3,14·200 рад=1256 рад. Произведя вычисления по формуле (4), получим:
М= – 1 Н·м.
Знак минус показывает, что момент силы трения оказывает тормозящее действие.
Пример 17. Платформа в виде диска радиусом R= 1,5 м и массой m1=180 кг вращается по инерции около вертикальной оси с частотой =10 мин-1. В центре платформы стоит человек массой т2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?
Решение. По закону сохранения момента импульса,
(1)
где J1 — момент инерции платформы; J2 — момент инерции человека, стоящего в центре платформы; — угловая скорость платформы с человеком, стоящим в ее центре; J2' — момент инерции человека, стоящего на краю платформы;
— угловая скорость платформы с человеком, стоящим на ее краю.
Линейная скорость человека, стоящего на краю платформы, связана с угловой скоростью соотношением:
. (2)
Определив из уравнения (1) и подставив полученное выражение в формулу (2), будем иметь:
v=(J1+J2) R/(J1+J'2). (3)
Момент инерции платформы рассчитываем как для диска; следовательно, J1=112m1R2. Момент инерции человека рассчитываем как для материальной точки. Поэтому J2=0, J'2=m2R2. Угловая скорость платформы до перехода человека равна .
Заменив в формуле (3) величины J1, J2, J'2. и их выражениями, получим:
Сделав подстановку значений т1, т2, , R и
, найдем линейную скорость человека:
Пример 18. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения
1=0,5 c-1. Момент инерции jo тела человека относительно оси вращения равен 1,6 кг·м2. В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями l1=l,6 м. Определить частоту вращения
2, скамьи с человеком, когда он опустит руки и расстояние l2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.
Решение. Человек, держащий гири (рис. 12), составляет вместе со скамьей замкнутую механическую систему, поэтому момент импульса J этой системы должен иметь постоянное значение. Следовательно, для данного случая
J1 = J2
,
где J и — момент инерции тела человека и угловая скорость скамьи и человека с вытянутыми руками; J2 и
— момент инерции тела человека и угловая скорость скамьи и человека с опущенными руками. Отсюда:
= (J1/J2)
.
Выразив в этом уравнении угловые скорости и
через частоты вращения
1 и
2 (
=2
) и сократив на 2
, получим:
2=(J1/J2)
1. (1)
Момент инерции системы, рассматриваемой в данной задаче, равен сумме момента инерции тела человека J0 и момента инерции гирь в руках человека. Так как размер гирь много меньше расстояния их от оси вращения, то момент инерции гирь можно определить по формуле момента инерции материальной точки: J=mr2. Следовательно,
J1=J0+2m(l1/2)2;
![]() |
где т — масса каждой из гирь; l1 и l2. — первоначальное и конечное расстояние между гирями. Подставив выражения J1 и J2 в уравнение (1), получим:
. (2)
Выполнив вычисления по формуле (2), найдем
2=1,18 с-1.
Пример 19. Стержень длиной l=1,5 м и массой М=10 кг может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня (рис. 13). В середину стержня ударяет пуля массой m=10 г, летящая в горизонтальном направлении со скоростью vo=500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?
Решение. Удар пули следует рассматривать как неупругий: после удара и пуля, и соответствующая точка стержня будут двигаться с одинаковыми скоростями.
Рассмотрим подробнее явления, происходящие при ударе. Сначала пуля, ударившись о стержень, за ничтожно малый промежуток времени приводит его в движение с угловой скоростью
и сообщает ему кинетическую энергию
(1)
где — момент инерции стержня относительно оси вращения.
Затем стержень поворачивается на искомый угол , причем центр масс его поднимается на высоту
. В отклоненном положении стержень будет обладать потенциальной энергией
(2)
Потенциальная энергия получена за счет кинетической энергии и равна ей по закону сохранения энергии. Приравняв правые части равенств (1) и (2), получим
Отсюда
.
Подставив в эту формулу выражение для момента инерции стержня , получим
(3)
Чтобы из выражения (3) найти , необходимо предварительно определить значение
. В момент удара на пулю и на стержень действуют силы тяжести, линии действия которых проходят через ось вращения и направлены вертикально вниз. Моменты этих сил относительно оси вращения равны нулю. Поэтому при ударе пули о стержень будет справедлив закон сохранения момента импульса. В начальный момент удара угловая скорость стержня
, поэтому его момент импульса
. Пуля коснулась стержня и начала углубляться в стержень, сообщая ему угловое ускорение и участвуя во вращении стержня около оси. Начальный момент импульса пули
, где
— расстояние точки попадания от оси вращения. В конечный момент удара стержень имел угловую скорость
, а пуля — линейную скорость
, равную линейной скорости точек стержня, находящихся на расстоянии
от оси вращения. Так как
, то конечный момент импульса пули
.
Применив закон сохранения импульса, можем написать:
, или
,
откуда:
, (4)
где — момент инерции стержня.
Если учесть, что в (4) , а также что
, то после несложных преобразований получим:
(5)
Подставив числовые значения величин в (5), найдем
рад = 0,5 рад.
По (3) получим:
Следовательно, =9°20'
Пример 20. Из пружинного пистолета был произведен выстрел вертикально вверх. Определить высоту h, на которую поднимается пуля массой m = 20 г, если пружина жесткостью k = 196 Н/м была сжата перед выстрелом на х = 10 см. Массой пружины пренебречь.
Решение. Система пуля — Земля (вместе с пистолетом) является замкнутой системой, в которой действуют консервативные силы — силы упругости и силы тяготения. Поэтому для решения задачи можно применить закон сохранения энергии в механике. Согласно этому закону, полная механическая энергия системы в начальном состоянии (в данном случае перед выстрелом) равна полной энергии
в конечном состоянии (когда пуля поднялась на высоту h), т. е.
=
, или
, (1)
где и
— кинетические энергии системы в начальном и конечном состояниях;
и
— потенциальные энергии в тех же состояниях.
Так как кинетические энергии пули в начальном и конечном состояниях равны нулю, то равенство (1) примет вид
=
. (2)
Если потенциальную энергию в поле тяготения Земли на ее поверхность принять равной нулю, то энергия системы в начальном состоянии равна потенциальной энергии сжатой пружины, т. е.
, а в конечном состоянии — потенциальной энергий пули на высоте
, т. е.
.
Подставив приведенные выражения и
в формулу (2), найдем
;
.
Произведя вычисления по последней формуле, получим h=5 м.
Пример 21. Точка совершает колебания по закону , где А=2 см. Определить начальную фазу φ, если
x(0)= см и
(0)<0. Построить векторную диаграмму для момента t=0.
Решение. Воспользуемся уравнением движения и выразим смещение в момент t=0 через начальную фазу:
.
Отсюда найдем начальную фазу:
.
Подставим в это выражение заданные значения x(0) и А: . Значению аргумента
удовлетворяют два значения угла:
и
.
Для того чтобы решить, какое из этих значений угла φ удовлетворяет еще и условию , найдем сначала
:
.
Подставив в это выражение значение t=0 и поочередно значения начальных фаз
и
, найдем:
;
.
Так как всегда A>0 и ω>0, то условию удовлетворяет только первое значение начальной фазы. Таким образом, искомая начальная фаза
.