Закономерности в спектре излучения атома водорода

В нормальных условиях атомы не излучают (как и в стационарном состоянии). Чтобы вызвать излучение атомов, надо увеличить их внутренню энергию. Спектры изолированных атомов носят ограниченный характер.

Причем линии в спектре атома, в том числе и атоме водорода, расположены не хаотично, а объединяются в группы, которые называются спектральными сериями. Фор-ла, опред знач-е длины волны в кажд из серии: ν=1/λ=R(1/n2 – 1/m2). n=n+1, n+2,.. λ=1,2,3,… (сериальная ф-ла) R=1,092*10м-1 пост-я Ридберга. В общем случае записывают 1/λ=Rz2(1/n2 – 1/m2).

Энергия фотона преш-го с уровня n на m: hv=Em-En=(hz2me4/(4πε0)22)(1/n2-1/m2).

Серия Лаймона – ν=1/λ=R(1/1 – 1/n2), n=2,3,4…,в УФ области.

Серия Бальмера – ν=1/λ=R(1/22 – 1/n2), n=3,4,5… видимая область и близкая УФ. Серия Пашена – ν=1/λ=R(1/32 – 1/n2), n=4,5,6…, инфракрасная область. Излучается в видимой и близкой УФ волнах. Все остльные серии лежат в ИК области света.

 

 

 

Постулаты Бора. Модель атома Бора.

Первую попытку сформулировать законы, которым подчиняется движение электронов в атоме предпринял Бор на основе представлений о том, что атом является устойчивой системой и что энергия, которую может излучать или поглощать атом, квантовая. 1) Для того, чтобы исключить 1-й недостаток модели Резенфорда, он предположил, что из всего многообразия орбит, которые вытекают из уравнения (1), в природе реализуются не все, а лишь некоторые устойчивые орбиты, которые он назвал стационарными, и, находясь на которых атом не излучает и не поглощает энергии. Стационарным орбитам отвечают устойчивые состояния атома, причем энергии, к-му обладает атом в этих состояниях, образуют дискретный ряд значений: E1, E2, E3…,En. Двигаясь по стационарной орбите электрон приобретает момент импульса, кратный приведенной постоянной кванта

h (в); m (индекс е) * v (инд. е) r = n h (в) (1), h (в) = n/2π, n=1,2,3… Т.е. при переходе с орбиты на орбиту меняется порциями, кратными h (в).

(1) – боровское правило контования или правило отбора стационарных орбит.

2) Для устранения 2-го противоречия модели Резенфорда, Бор предположил, что излучение или поглощение энергии атомом происходит при переходе атома из одного стационарного состояния в другое. При каждом таком переходе излучается квант энергии, равный разности энергий тел стационарных состояний, между которыми происходит квантовый скачок электрона, hν=En – Em (2) (n>m, излучение, n<m, поглощение).

2 постулата: 1) Атом обладает устойчивыми или стационарными состояниями, причем энергия атомов в этом состоянии образует дискретный ряд значений (постулат стационарных значений) E1, E2, E3…En. 2) Всякому излучению или поглощению энергии должен соответствовать переход атома из одного стационарного состояния в другое. При каждом таком переходе испускается монохроматическое излучение, частота которого определяется ν=(En – Em)/h(в) (правило частот Бора).

Модель атома Бора.

1913 году. Бор принял новые постулаты квантовой механики, согласно которым на субатомном уровне энергия испускается исключительно порциями, которые получили название «кванты». Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Поэтому они и удерживаются на своей более высокой орбите, подобно самолету в аэропорту отправления, когда аэропорт назначения закрыт по причине нелетной погоды. Однако электроны могут переходить на другую разрешенную орбиту. Как и большинство явлений в мире квантовой механики, этот процесс не так просто представить наглядно. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». В картине атома по Бору, таким образом, электроны переходят вниз и вверх по орбитам дискретными скачками — с одной разрешенной орбиты на другую, подобно тому, как мы поднимаемся и спускаемся по ступеням лестницы. Каждый скачок обязательно сопровождается испусканием или поглощением кванта энергии электромагнитного излучения, который мы называем фотоном.