Принцип наложения и метод наложения


Ещё один метод расчета линейных электрических цепей называется методом наложения. В его основе лежит принцип наложения, который можно сформулировать следующим образом: ток в любой ветви равен алгебраической сумме токов, вызываемых каждой из Э.Д.С. схемы в отдельности.

 
 

На исходной схеме (рис 2.2а) произвольно выбираем направления токов. Рассчитываем цепь от действия Э.Д.С. Е1, для чего мысленно закорачиваем (убираем) все остальные Э.Д.С., в нашем случае Э.Д.С. Е2 (рис 2.2б).

Рассчитываем цепь от действия Э.Д.С. Е2, для чего мысленно закорачиваем Э.Д.С. Е1 (рис 2.2в)

Действительные токи находим как алгебраическую сумму найденных частичных токов. Значения токов и берём со знаком минус, если они направлены в другую сторону, нежели ток на исходной схеме.

Входные и взаимные проводимости ветвей

На рис. 2.3а изображена скелетная схема пассивной цепи. В каждой её ветви есть сопротивление. Выделим две схемы ветви m и k. Поместим в ветвь m Э.Д.С. (рис 2.3б). Выберем контуры в схеме так, чтобы k- ветвь входила только в k- контур, а m- ветвь, только в m-контур. Э.Д.С. Em вызовет точки в ветвях m и k.

 

 

Коэффициенты q имеют размерность проводимости. Коэффициент qmm называют входной проводимостью ветви m, qkm – взаимной проводимостью.

Для расчёта проводимостей составляют уравнения по методу контурных токов, следя за тем, чтобы ветви, взаимные и входные проводимости которых представляют интерес, входили каждая только в свой контур. Далее находят определитель системы ∆ и по нему необходимые алгебраические дополнения.

 

Теорема взаимности

Теорема взаимности формируется таким образом: для любой линейной цепи с одним источником Э.Д.С. ток Ik в ветвях, вызванный Э.Д.С. Em, находящийся в m-ветви, будет равен току Im в m-ветви, вызванному Э.Д.С. Ek (численно равной Em) находящейся в k ветви.

Другими словами, сущность принципа взаимности состоит в следующем. Пусть имеется электрическая схема произвольной конфигурации с единственным источником Э.Д.С. Em, который действует в m-ветви в направлении от точки а к точке в (рис 2.4а) и создаёт в k-ветви с сопротивлением Rk ток Ik, направленный от точки с к точке d. Такой же источник Э.Д.С. Ek = Em, включенный в k-ветвь и действующий от точки c к точке d (рис 2.4б) создаёт в m-ветви с сопротивлением Rm = Rk ток Im, направленный от точки а к точке b и равный току Ik.

На рис. 2.4 пассивным четырёхполюсником (прямоугольником с буквой П) обозначена вся остальная часть схемы, не содержащая источников Э.Д.С. и источников тока.

Токи в ветвях m и k.

 

Можно отметить, что теорема взаимности справедлива не только для токов, но и для напряжений.

 

Метод узловых потенциалов

 
 

В тех случаях, когда в анализируемой схеме число узлов без единицы меньше числа независимых контуров, метод узловых потенциалов является более экономичным по сравнению с методом контурных токов.

Суть этого метода состоит в определении напряжений между узлами сложной электрической цепи путём решения системы уравнений, составленных на основе первого закона Кирхгофа. После нахождения неизвестных потенциалов, используя закон Ома, определяют токи во всех ветвях, и выясняют их истинное направление.

Потенциал любой одной точки схемы можно принять равным нулю, так как ток в ветви зависит не от абсолютных значений потенциалов узлов, а от разности потенциалов на концах ветви.

При этом число неизвестных уменьшается с n до n -1.

Рассмотрим применение данного метода для расчета цепи, приведённой на рис. 2.9, которая имеет большое число ветвей (7) и сравнительно небольшое число узлов (4).

Если узел 0 мысленно заземлить, то есть принять его потенциал равным 0, то неизвестными будут потенциалы только трёх узлов: .

 
 

Первоначально в исходной схеме произвольно задаём направления токов, которые обозначаются с двумя индексами: первый индекс определяет номер узла, от которого течет ток, а второй - номер узла, к которому ток подтекает.

- сумма проводимостей ветвей, сходящихся в узле 1;

- проводимость ветви, находящейся между узлами

1 и 2, принято всегда брать со знаком «-».

- узловой ток первого узла, равный алгебраической сумме токов, сходящихся в узле. В образовании узлового тока n-й ветви участвуют лишь те ветви, подходящие к этому узлу, которые содержат источники Э.Д.С. и источники тока. Если Э.Д.С. и ток источника тока направлены к узлу, то ставится знак «+», в противном случае «-». После решения системы уравнений определяют токи в ветвях по закону Ома,



>8
  • 9
  • 10
  • Далее ⇒