Реагентная декарбонизация воды и известково-содовое умягчение

 

2. В составе установок для реагентной декарбонизации воды и известково-содового умягчения следует предусматривать: реагентное хозяйство, смесители, осветлители со взвешенным осадком, фильтры и устройства для стабилизационной обработки воды.

В отдельных случаях (см. п. 8) вместо осветлителей со взвешенным осадком могут применяться вихревые реакторы.

3. При декарбонизации остаточная жесткость умягченной воды может быть получена на 0,4—0,8 мг-экв/л больше некарбонатной жесткости, а щелочность 0,8—1,2 мг-экв/л; при известково-содовом умягчении - остаточная жесткость 0,5—1 мг-экв/л и щелочность 0,8— 1,2 мг-экв/л. Нижние пределы могут быть получены при подогреве воды до 35—40 °С.

4. При декарбонизации и известково-содовом умягчении воды известь надлежит применять в виде известкового молока. При суточном расходе извести менее 0,25 т (в расчете на СаО) известь допускается вводить в умягчаемую воду в виде насыщенного известкового раствора, получаемого в сатураторах.

5. Дозы извести Ди, мг/л, для декарбонизации воды, считая по СаО, надлежит определять по формулам:

а) при соотношении между концентрацией в воде кальция и карбонатной жесткостью (Са2+)/20>Жк

 

Ди = 28[(СО2)/22 + Жк + Дк/ек + 0,3]; (2)

 

б) при соотношении между концентрацией в воде кальция и карбонатной жесткостью (Са2+)/20<Жк

 

Ди = 28[(СО2)/22 + 2Жк - (Са2+)/20 + Дк/ек + 0,5], (3)

 

где (СО2) — концентрация в воде свободной двуокиси углерода, мг/л;

(Са2+) — содержание в воде кальция, мг/л;

Дк — доза коагулянта FeCl3 или FeSO4 (в расчете на безводные продукты), мг/л;

ек — эквивалентная масса активного вещества коагулянта, мг/мг-экв (для FеСl3 — 54, для FeSO4 ¾ 76).

6. Дозы извести и соды при известково-содовом умягчении воды следует определять по формулам:

доза извести Ди, мг/л, в расчете на СаО

 

Ди = 28[(СО2)/22 + Жк + (Mg2+)/12 + Дк/ек + 0,5]; (4)

 

доза соды Дс, мг/л, в расчете на Na2CO3

 

Дс = 53(Жн.к + Дк/ек + 1), (5)

 

где (Mg2+) — содержание в воде магния, мг/л;

Жн.к некарбонатная жесткость воды, мг-экв/л.

7. В качестве коагулянтов при умягчении воды известью или известью и содой следует применять хлорное железо или железный купорос.

Дозы коагулянта в расчете на безводные продукты FeCl3 или FeSO4 надлежит принимать 25—35 мг/л с последующим уточнением в процессе эксплуатации водоумягчительной установки.

8. При обосновании допускается производить декарбонизацию или известково-содовое умягчение воды в вихревых реакторах с получением крупки карбоната кальция и ее обжигом в целях утилизации в качестве извести-реагента.

Умягчение воды в вихревых реакторах следует принимать при соотношении (Са2+)/20 мг/л > Жк, содержании магния в исходной воде не более 15 мг/л и перманганатной окисляемости не более 10 мг О/л.

Окончательное осветление воды после вихревых реакторов следует производить на фильтрах.

9. Для расчета вихревых реакторов следует принимать: скорость входа в реактор 0,8—1 м/с; угол конусности 15—20°; скорость восходящего движения воды на уровне водоотводящих устройств 4—6 мм/с. В качестве контактной массы для загрузки вихревых реакторов следует применять молотый известняк, размолотую крупку карбоната кальция, образовавшуюся в вихревых реакторах, или мраморную крошку.

Крупность зерен контактной массы должна быть 0,2—0,3 мм, количество ее — 10 кг на 1 м3 объема вихревого реактора. Контактную массу надлежит догружать при каждом выпуске крупки из вихревого реактора.

Известь следует вводить в нижнюю часть реактора в виде известкового раствора или молока. При обработке воды в вихревых реакторах коагулянт добавлять не следует.

 

Примечание. При (Са2+)/20<Жк декарбонизацию воды следует производить в осветителях с доосветлением воды на фильтрах.

 

10. Для выделения взвеси, образующейся при умягчении воды известью, а также известью и содой, следует применять осветлители со взвешенным осадком (специальной конструкции).

Скорость движения воды в слое взвешенного осадка следует принимать 1,3—1,6 мм/с, вода после осветлителя должна содержать взвешенных веществ не более 15 мг/л.

11. Фильтры для осветления воды, прошедшей через вихревые реакторы или осветлители, следует загружать песком или дробленым антрацитом с крупностью зерен 0,5—1,25 мм и коэффициентом неоднородности 2—2,2. Высота слоя загрузки 0,8—1 м, скорость фильтрования — до 6 м/ч.

Допускается применение двухслойных фильтров.

Фильтры надлежит оборудовать устройствами для верхней промывки.

 

Натрий-катионитный метод умягчения воды

 

12. Натрий-катионитный метод следует применять для умягчения подземных вод и вод поверхностных источников с мутностью не более 5—8 мг/л и цветностью не более 30°. При натрий-катионировании щелочность воды не изменяется.

13. При одноступенчатом натрий-катионировании общая жесткость воды может быть снижена до 0,05—0,1 г-экв/м3, при двухступенчатом — до 0,01 г-экв/м3.

14. Объем катионита Wк, м3, в фильтрах первой ступени следует определять по формуле

 

Wк = 24qуЖо.исх/nр , (6)

 

где qурасход умягченной воды, м3/ч;

Жо.исх — общая жесткость исходной воды, г-экв/м3;

рабочая обменная емкость катионита при натрий-катионировании; г-экв/м3

nр —число регенераций каждого фильтра в сутки, принимаемое в пределах от одной до трех.

15. Рабочую обменную емкость катионита при натрий-катионировании , г-экв/м3 следует определять по формуле

 

= aNabNa Еполн - 0,5qудЖо.исх, (7)

 

где aNa — коэффициент эффективности регенерации натрий-катионита, учитывающий неполноту регенерации катионита, принимаемый по табл. 1;

bNa — коэффициент, учитывающий снижение обменной емкости катионита по Ca2+ и Mg2+ вследствие частичного задержания катионитов Na+, принимаемый по табл. 2, в которой СNa — концентрация натрия в исходной воде, г-экв/м3 (СNa = (Na+)/23);

 

Таблица 1

 

Удельный расход поваренной соли на регенерацию катионита, г на г-экв рабочей обменной емкости
Коэффициент эффективности регенерации катионита aNa 0,62 0,74 0,81 0,86 0,9

 

Таблица 2

 

Cna/Жо.исх 0,01 0,05 0,1 0,5
bNa 0,93 0,88 0,83 0,7 0,65 0,54 0,5

 

Еполн полная обменная емкость катионита, г-экв/м3, определяемая по заводским паспортным данным. При отсутствии таких данных при расчетах допускается принимать: для сульфоугля крупностью 0,5—1,1 мм — 500 г-экв/м3; для катионита КУ-2 крупностью 0,8—1,2 мм — 1500—1700 г-экв/м3.

qуд удельный расход воды на отмывку катионита, м3 на 1 м3 катионита, принимаемый равным для сульфоугля — 4 и для КУ-2 ¾ 6.

16. Площадь катионитных фильтров первой ступени Fк, м2, следует определять по формуле

 

Fк = Wк/Нк, (8)

 

где Нк высота слоя катионита в фильтре, принимаемая от 2 до 2,5 м (большую высоту загрузки следует принимать при жесткости воды более 10 г-экв/м3);

Wк — определяется по формуле (6).

Количество катионитных фильтров первой ступени надлежит принимать: рабочих — не менее двух, резервных — один.

17. Скорость фильтрования воды через катионит для напорных фильтров первой ступени при нормальном режиме не должна превышать при общей жесткости воды:

до 5 г-экв/м3 — 25 м/ч;

5—10 г-экв/м3 — 15 м/ч;

10—15 г-экв/м3 — 10 м/ч.

 

Примечание. Допускается кратковременное увеличение скорости фильтрования на 10 м/ч по сравнению с указанными выше при выключении фильтров на регенерацию или ремонт.

 

18. Потерю напора в напорных катионитных фильтрах при фильтровании следует определять как сумму потерь напора в коммуникациях фильтра, в дренаже и катионите. Потерю напора в фильтре следует принимать по табл. 3.

 

Таблица 3

 

Высота слоя, м, катионита крупностью 0,5–1,1 мм Потери напора, м, в напорном катионитном фильтре при скорости фильтрования, м/ч
или 0,8–1,2 мм
5,5
2,5 4,5 5,5 6,5 7,5

 

19. В открытых катионитных фильтрах слой воды над катионитом следует принимать 2,5—3 м и скорость фильтрования не более 15 м/ч.

20. Интенсивность подачи воды для взрыхления катионита следует принимать 4 л/(с×м2) при крупности зерен катионита 0,5—1,1 мм и 5 л/(с×м2) при крупности 0,8—1,2 мм. Продолжительность взрыхления надлежит принимать 20—30 мин. Подачу воды на взрыхление катионита следует предусматривать согласно п. 6.117.

21. Регенерацию загрузки катионитных фильтров следует предусматривать технической поваренной солью. Расход поваренной соли Рс, кг, на одну регенерацию натрий-катионитного фильтра первой ступени следует определять по формуле

 

Рс = fкНк ас/1000, (9)

 

где fк — площадь одного фильтра, м2;

Нк — высота слоя катионита в фильтре, м,принимаемая согласно п. 16;

— рабочая обменная емкость катионита, г-экв/м3, принимаемая согласно п. 15;

ас удельный расход соли на 1 г-экв рабочей обменной емкости катионита, принимаемый 120—150 г/г-экв для фильтров первой ступени при двухступенчатой схеме и 150—200 г/г-экв при одноступенчатой схеме.

Жесткость умягченной воды при различных удельных расходах соли приведена на рис. 1.

 

 

Рис. 1. График для определения остаточной жесткости воды, умягченной одноступенчатым натрий-катионированием

 

Концентрацию регенерационного раствора для фильтров первой ступени следует принимать 5—8 %.

Скорость фильтрования регенерационного раствора через катионит фильтров первой ступени следует принимать 3—4 м/ч; скорость фильтрования исходной воды для отмывки катионита — 6—8 м/ч, удельный расход отмывочной воды — 5—6 м3 на 1 м3 катионита.

22. Натрий-катионитные фильтры второй ступени следует рассчитывать согласно пп. 20, 21, при этом следует принимать: высоту слоя катионита — 1,5 м; скорость фильтрования — не более 40 м/ч; удельный расход соли для регенерации катионита в фильтрах второй ступени 300—400 г на 1 г-экв задержанных катионов жесткости; концентрацию регенерационного раствора — 8—12 %.

Потерю напора в фильтре второй ступени следует принимать 13—15 м.

Отмывку катионита в фильтрах второй ступени надлежит предусматривать фильтратом первой ступени.

При расчете фильтров второй ступени общую жесткость поступающей на них воды следует принимать 0,1 г-экв/м3, рабочую емкость поглощения катионита — 250—300 г-экв/м3.

23. При обосновании для умягчения воды повышенной минерализации допускается применение схем противоточного или ступенчато-противоточного натрий-катионирования.