Шум .Физические характеристики шума .Международная шкала громкости .Нормирование параметров шума

Шумом называется беспорядочное сочетание звуков различной высоты и громкости, вызывающее неприятное субъективное ощущение и объективные изменения органов и систем.

Шум состоит из отдельных звуков и имеет физическую характеристику. Волновое распространение звука характеризуется частотой (выражается в герцах) и силой, или интенсивностью, т. е. количеством энергии, переносимой звуковой волной в течение 1 с через 1 см2 поверхности, перпендикулярной к направлению распространения звука. Сила звука измеряется в энергетических единицах, чаще всего в эргах в секунду на 1 см2. Эрг равен силе в 1 дину, т. е. силе, сообщаемой массе, весом в 1 г ускорение в 1 см2/с.

Поскольку отсутствуют способы непосредственного определения энергии звуковых колебаний, измеряется давление, производимое на тела, на которые они падают. Единицей звукового давления является бар, отвечающий силе в 1 дину на 1 см2 поверхности и равной 1/1 000 000 доле атмосферного давления. Речь обычной громкости создает давление в 1 бар.

Восприятие шума и звука

Человек способен воспринимать как звук колебания с частотой от 16 до 20 000 Гц. С возрастом чувствительность звукового анализатора уменьшается, и в преклонном возрасте колебания с частотой выше 13 000—15 000 Гц не вызывают слухового ощущения.

Субъективно частота, ее увеличение воспринимаются как повышение тона, высоты звука. Обычно основной тон сопровождается целым рядом дополнительных звуков (обертонов), возникающих благодаря колебанию отдельных частей звучащего тела. Количество и сила обертонов создают определенную окраску, или тембр, сложного звука, благодаря чему удается распознать звуки музыкальных инструментов или голоса людей.

Чтобы вызвать слуховое ощущение, звуки должны обладать определенной силой. Наименьшая сила звука, которая воспринимается человеком, называется порогом слышимости данного звука.

Пороги слышимости для звуков с различной частотой неодинаковы. Наименьшие пороги имеют звуки с частотой от 500 до 4000 Гц. За пределами этого диапазона пороги слышимости повышаются, что свидетельствует о снижении чувствительности.

Увеличение физической силы звука субъективно воспринимается как повышение громкости, однако это происходит до определенного предела, выше которого ощущается болезненное давление в ушах – порог болевого ощущения, или порог осязания. При постепенном усилении энергии звука от порога слышимости до болевого порога обнаруживаются особенности слухового восприятия: ощущение громкости звука увеличивается не пропорционально росту его звуковой энергии, а значительно медленнее. Так, чтобы ощутить едва заметное приращение громкости звука, необходимо увеличить его физическую силу на 26 %. По закону Вебера—Фехнера ощущение нарастает пропорционально не силе раздражения, а логарифму его силы.

Звуки разных частот при одной и той же физической их интенсивности ощущаются ухом не как одинаково громкие. Высокочастотные звуки ощущаются как более громкие, чем низкочастотные.

Для количественной оценки звуковой энергии предложена особая логарифмическая шкала уровней силы звука в белах или децибелах. В этой шкале за нуль, или исходный уровень, условно принята сила (10-9 эрг/см2 x сек, или 2 x 10-5 Вт/см2/с), приблизительно равная порогу слышимости звука с частотой 1000 Гц, который в акустике принимается за стандартный звук. Каждая ступень такой шкалы, получившая название бел, соответствует изменению силы звука в 10 раз. Увеличение силы звука в 100 раз по логарифмической шкале обозначается как повышение уровня силы звука на 2 бела. Приращение уровня силы звука на 3 бела соответствует увеличению абсолютной силы его в 1000 раз и т. д.

Таким образом, чтобы определить уровень силы любого звука или шума в белах, следует разделить его абсолютную силу на силу звука, принятую за уровень сравнения, и вычислить десятичный логарифм этого соотношения.

где I1 – абсолютная сила;

I0 – сила звука уровня сравнения.

Если выразить в белах громадный диапазон силы звука с частотой 1000 Гц от порога слышимости и (нулевой уровень) до болевого порога, то весь диапазон по логарифмической шкале составит 14 бел.

В связи с тем, что орган слуха способен различать прирост звука в 0,1 бел, то на практике при измерении звуков применяется децибел (дБ), т. е. единица в 10 раз меньшая, чем бел.

В связи с особенностью восприятия слухового анализатора звук одинаковой громкости будет восприниматься человеком от источников шума с различными физическими параметрами. Так, звук силой в 50 дБ и частотой 100 Гц будет восприниматься как одинаково громкий со звуком с силой 20 дБ и частотой 1000 Гц.

Чтобы иметь возможность сравнивать между собой различные по частотному составу звуки различной силы в отношении их громкости, введена специальная единица громкости, называемая «фон». При этом за единицу сравнения принят звук в 1000 Гц, который считается стандартным. В нашем примере звук в 50 дБ и частотой 100 Гц будет равен 20 фонам, поскольку соответствует звуку с силой 20 дБ и частотой 1000 Гц.

Уровень шума, не вызывающий вредных последствий для уха работающих, или так называемый нормальный предел громкости при частоте 1000 Гц, соответствует 75—80 фонам. При повышении частоты колебаний звука по сравнению со стандартным предел громкости должен быть снижен, так как вредное воздействие на орган слуха увеличивается с повышением частоты колебаний.

Если тоны, составляющие шум, располагаются непрерывно в широком диапазоне частот, то такие шумы называют непрерывными, или сплошными. Если при этом сила звуков, составляющих шум, примерно одинакова, такой шум называют белым по аналогии с «белым светом», характеризующимся сплошным спектром.

Определение и нормирование шумов проводятся обычно в частотной полосе, равной октаве, полуоктаве или трети октавы. За октаву принимают диапазон частот, в которой верхняя граница частоты вдвое больше нижней (например, 40—80, 80—160 и т. д.). Для обозначения октавы обычно указывают не диапазон частот, а так называемые среднегеометрические частоты. Так, для октавы 40—80 Гц среднегеометрическая частота – 62 Гц, для октавы 80—160 Гц – 125 Гц и т. д.

По спектральному составу все шумы делят на 3 класса.

Класс 1. Низкочастотные (шумы тихоходных агрегатов неударного действия, шумы, проникающие сквозь звукоизолирующие преграды). Наибольшие уровни в спектре расположены ниже частоты 300 Гц, за ним следует понижение (не менее чем на 5 дБ на октаву).

Класс 2. Среднечастотные шумы (шумы большинства машин, станков и агрегатов неударного действия). Наибольшие уровни в спектре расположены ниже частоты 800 Гц, и далее опять понижение не менее чем на 5 дБ на октаву.

Класс 3. Высокочастотные шумы (звенящие, шипящие, свистящие шумы, характерные для агрегатов ударного действия, потоков воздуха и газа, агрегатов, действующих с большими скоростями). Наименьший уровень шума в спектре расположен выше 800 Гц.

Различают шумы:

1) широкополосные с непрерывным спектром более 1 октавы;

2) тональные, когда интенсивность шума в узком диапазоне частот резко преобладает над остальными частотами.

По распределению звуковой энергии во времени шумы подразделяются:

1) постоянные, уровень звука которых за 8-часовой рабочий день изменяются во времени не более чем на 5 дБ;

2) непостоянные, уровень звука которых за 8-часовой рабочий день изменяются более чем на 5 дБ.

Непостоянные шумы подразделяются на:

1) колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

2) прерывистые, уровень звука которых ступенчато изменяются (на 5 дБ и более), причем длительность интервалов с постоянным уровнем составляет 1 с и более;

3) импульсные, состоящие из одного или нескольких сигналов длительностью менее 1 с каждый, при этом уровень звука изменяется не менее чем на 7 дБ.

Если после воздействия шума того или иного тона чувствительность к нему понижается (порог восприятия повышается) не более чем на 10—15 дБ, и восстановление ее происходит не более чем за 2—3 мин, следует думать об адаптации. Если изменение порогов значительно, и длительность восстановления затягивается, это свидетельствует о наступлении утомления. Основной формой профессиональной патологии, вызываемой интенсивным шумом, является стойкое понижение чувствительности к различным тонам и шепотной речи (профессиональная тугоухость и глухота).

Влияние шума на организм

Весь комплекс нарушений, развивающийся в организме при действии шума, можно объединить в так называемую шумовую болезнь (проф. Е. Ц. Андреева-Галанина). Шумовая болезнь – это общее заболевание всего организма, развивающееся в результате воздействия шума, с преимущественным поражением центральной нервной системы и слухового анализатора. Характерной особенностью шумовой болезни является то, что изменения в организме протекают по типу астеновегетативного и астеноневротического синдромов, развитие которых значительно опережает нарушения, возникающие со стороны слуховой функции. Клинические проявления в организме под влиянием шума подразделяются на специфические изменения в органе слуха и неспецифические – в других органах и системах.

Регламентация шума

Регламентация шума проводится с учетом его характера и условий труда, цели и назначения помещений, сопутствующих вредных производственных факторов. Для гигиенической оценки шума пользуются материалами: СН 2.2.4/2.1.8.5622-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Для постоянного шума нормирование производится в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. Для ориентировочной оценки допускается измерять в дБА Преимущество измерения шума в дБА заключается в том, что позволяет определять превышение допустимых уровней шума без спектрального анализа его в октавных полосах.

При частотах 31,5 и 8000 Гц шум нормируется на уровне соответственно 86 и 38 дБ. Эквивалентный уровень звука в дБ(А) составляет 50 дБ. Для тонального и импульсного шума он на 5 дБ меньше.

Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБ, а для импульсного шума максимальный уровень звука более 125 дБ.

В отдельных отраслях производства применительно к профессиям нормирование ведется с учетом категории тяжести и напряженности. При этом выделяют 4 степени тяжести и напряженности, учитывая эргономические критерии:

1) динамическую и статическую мышечную нагрузку;

2) нервную нагрузку – напряжение внимания, плотность сигналов или сообщений в течение 1 ч, эмоциональное напряжение, сменность;

3) напряжение анализаторной функции – зрение, объем оперативной памяти, т. е. число элементов, подлежащих запоминанию в течение 2 ч и более, интеллектуальное напряжение, монотонность работы.

При малой напряженности, а также легкой и средней тяжести труда шум регламентируется на уровне 80 дБ. При той же напряженности (малой), но при тяжелой и очень тяжелой форме труда он на 5 дБ меньше. При умеренно напряженном труде, напряженном и очень напряженном шум нормируется соответственно на 10 дБ меньше, т. е. 70, 60 и 50 дБ.

Степень потери слуха устанавливается по величине потери слуха на речевых частотах, т. е. по частоте 500, 1000 и 2000 Гц и на профессиональной частоте 4000 Гц. При этом выделяют 3 степени снижения слуха:

1) легкое снижение – на речевых частотах снижение слуха происходит на 10—20 дБ, а на профессиональных – на 60 ± 20 дБ;

2) умеренное снижение – на речевых частотах снижение слуха на 21—30 дБ, а на профессиональных – на 65 ± 20 дБ;

3) значительное снижение – соответственно на 31 дБ и более, а на профессиональных частотах на 70 ± 20 дБ.

Вопрос

Электрический ток, его воздействие на организм человека.

Включаясь в электрическую цепь постоянного или переменного тока, человек подвер-гается как местному, так и общему его действию. Местное действие электрического тока приводит к поражению чаще всего кожного покрова, а иногда мышечных тканей, сухожилий и костей. Поскольку указанные поражения происходят за короткий промежуток времени, результат такого действия называется электротравмой.Различают следующие виды электротравм: электрические ожоги; электрические знаки; электрометаллизация кожного покрова; электрооф-тальмия; механические повреждения.

Факторами опасного и вредного воздействия на человека, связанными с использованием электрической энергии, являются:

1) протекание электрического тока через организм человека;

2) воздействие электрической дуги;

3) воздействие биологически активного электрического поля;

4) воздействие биологически активного магнитного поля;

5) воздействие электростатического поля;

6) воздействие электромагнитного излучения (ЭМИ).

Опасное и вредное воздействия электрического тока, электрической дуги, электрического и магнитного попей, электростатического поля и ЭМИ проявляются в ви­де электротравм и профессиональных заболеваний. Степень их воздействия зави­сит от рода и величины напряжения и тока, частоты электрического тока, пути тока через тело человека, продолжительности воздействия электрического тока или электрического и магнитного полей на организм человека, условий внешней среды.

Электротравмы могут быть результатом прямого или косвенного действия элек­трического тока на человека. Например, ожоги, вызванные нагреванием при прохо­ждении электрического тока через организм человека, – это результат прямого действия электротока. Механические повреждения при падении после удара электрическим током – результат косвенного действия.

Электрический ток, протекая через организм человека, вызывает выделение тепла. Выделяемое тепло прямо пропорционально времени воздействия, квадрату эффективного значения тока и сопротивлению участка, через который протекает ток.Кроме того, электрический ток вызывает непроизвольное сокращение мышц, ко­торое затрудняет освобождение человека от контакта с токоведущими частями.

Защитными средствами называются приборы, аппараты, приспособления и устройства, служащие для защиты работающего в электроустановках персонала от поражения электрическим током, ожогов электрической дугой, механических повреждений, падения с высоты, воздействия электрического поля и т. п.

Основными называются такие защитные средства, изоляция которых надежно выдерживает рабочее напряжение электроустановок и при помощи которых можно касаться токоведущих частей, находящихся под напряжением. Поэтому основные защитные средства испытывают напряжением, зависящим от рабочего напряжения электроустановки.

Основные защитные средства изготовляют из материалов с устойчивой диэлектрической характеристикой (пластмассы, бакелита, фарфора, эбонита, гетинакса и т. п.).

Дополнительныминазываются такие защитные средства, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током. Они являются дополнительными средствами для защиты от напряжения прикосновения и шагового напряжения, ожогов дугой и продуктами ее горения.

Основная изоляция токоведущих частей: Основная изоляция токоведущих частей должна иметь сопротивление, обеспечивающее утечки тока через неё, не превышающие безо-пасных величин(1 мА для переменного тока промышленной частоты). Для изоляции используются материалы, обладающие также механической прочностью, устойчивостью к воздействию агрессивных сред, повышенных температур и др. производственных факторов

Ограждения и оболочки: Ограждения и оболочки в электроустанов-ках напряжением до1 кВ представляют собой сплошные или сетчатые устройства, предотвращающие несанкционированный доступ к открытым токоведущим частям электроустановок.

Установка барьеров: Барьеры предназначены для защиты от случай-ного прикосновения к токоведущим частям в электроустановках напряже-нием до1 кВ или приближения к ним на опасное расстояние в электроус-тановках напряжением выше1 кВ, но не исключают преднамеренногоприкосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять не-преднамеренно. Барьеры должны быть изготовлены из изолирующего ма-териала. Размещение токоведущих частей вне зоны досягаемости: Эта мера применяется для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше1 кВ при не возможности сооружения ограждений, оболочек и барьеров.

Защитное заземление: Защитное заземление представляет собой преднамеренное электрическое со-единение с землёй нетоковедущих проводящих(электропроводных) частей электрооборудования, которые в результате нарушения изоляции могут оказаться под напряжением. Такой частью электрооборудования, как пра-вило, является его металлический корпус.

Автоматическое отключение питания: Автоматическое отключение питания применяется для быстрого отключения энергоисточника от ава-рийного электрооборудования.

Уравнивание потенциалов: Система уравнивания потенциалов пред-назначена для ликвидации разности потенциалов между любыми точками открытых проводящих частей электроустановок, здания, инженерных коммуникаций и т.п.

Выравнивание потенциалов: Система выравнивания потенциалов предназначена для снижения разности потенциалов(шагового напряже-ния) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путём применения специальных проводя-щих покрытий земли.

Вопрос.

Освещение.Основные светотехнические характеристики. Негативное воздействие показателей освещения на организм человека.

Гигиенические требования к производственному освещению, основанные на психофизических особенностях восприятия света и его влияния на человека, определяются: спектральным составом света, который максимально должен быть приближен к солнечному; достаточным уровнем освещенности, учитывающим условия зрительной работы; необходимой равномерностью освещения и устойчивости уровня; отсутствием блесткости и мерцания. Для выполнения этих требований организуют различные виды и системы освещения.

Виды и системы освещения. Нормирование

Как уже говорилось выше, освещение рабочих мест может быть естественным и искусственным. Естественное осуществляется через окна (боковое), через застекленные перекрытия (верхнее) или комбинированное (через окна и перекрытия). Оно зависит от времени суток, года и атмосферных условий. От этих недостатков свободно искусственное освещение, создаваемое с помощью искусственных источников света (лампы накаливания или газоразрядные). Оно подразделяется на рабочее, аварийное, эвакуационное, охранное, сигнальное.

Рабочее освещение предназначено для обеспечения нормального выполнения трудового процесса и прохода людей. Во внерабочее время включается дежурное освещение.

Аварийное освещение применяется для продолжения работы при внезапных отключениях энергоснабжения, когда отключение рабочего освещения может привести к чрезвычайной ситуации. При аварийном освещении часть светильников общего освещения питаются током от автономного источника и в случае отключения основной сети должны обеспечить освещенность не менее 5 % от нормы рабочего освещения [15].

Эвакуационное освещение необходимо при аварийной остановке для вывода (эвакуации людей из помещения).

Охранное освещение размещается вдоль границ территорий, охраняемых в ночное время.

Сигнальное освещение предназначено для фиксации границ опасной зоны (например, сигнальное освещение мачт).

Искусственное освещение бывает местное, общее и комбинированное. Общее – это такое освещение, когда системы освещения размещаются в верхней зоне помещения и освещают всю площадь, занятую оборудованием рабочих мест. Если светильники концентрируют световой поток непосредственно на рабочее место, то такое освещение называется местным. В темное время суток наличие общего освещения обязательно! Комбинированное освещение (общее плюс местное) необходимо для получения более высоких уровней освещенности. Совокупность естественного и искусственного освещения называется совмещенным. Оно необходимо также для обеспечения более высоких уровней освещенности. Уровень освещенности зависит от разряда зрительской работы, определяемой размерами объекта различения и точности выполняемых работ, а также от подразряда работ, определяемых контрастностью и фоном. Количество нормируемых разрядов зрительской работы – 8 [15]. Например, при выполнении работы высокой точности (III разряд), подразряд «а» (контраст – малый, фон – темный) освещенность при комбинированном освещении на рабочем месте должна быть обеспечена значением в 2000 лк, а при общем – 500 лк, используя люминесцентные (газоразрядные) лампы, или соответственно 1500 лк и 300 лк, используя лампы накаливания. Необходимо учитывать при выборе источников света, что в видимом спектре могут быть не только составляющие солнечного света, но и другие, которые неблагоприятно влияют на зрение (последние медицинские исследования показали, что в спектре света люминесцентных ламп такие составляющие присутствуют!)

Ощущение зрения происходит под воздействием видимого излучения (света), которое представляет собой электромагнитное излучение с длиной волны 0,38...0,76 мкм. Чувствительность зрения максимальна к электромагнитному излучению с длиной волны 0,555 мкм (желто-зеленый цвет) и уменьшается к границам видимого спектра.

Освещение характеризуется количественными и качественными показателями.

К количественным показателям относятся:

- световой поток Ф – часть лучистого потока, воспринимаемая человеком как свет; характеризует мощность светового излучения, измеряется в люменах (лм);

Световой поток измеряется в лаборатории, используя интегральный сферический прибор. Эта характеристика - дополнительная к дальность освещения. Два источника света, размещенные на одинаковом расстоянии, могут на самом деле светить с разной интенсивностью. Как и дальность освещения, световой поток уменьшается при разрядке источника питания.

- сила света J – пространственная плотность светового потока, определяется как отношение светового потока dф, исходящего от источника и равномерно распространяющегося внутри элементарного телесного угла dΩ, к величине этого угла; J== dф/dΩ ; измеряется в канделах (кд);

- освещенность Е – поверхностная плотность светового потока; определяется как отношение светового потока dф, равномерно падающего на освещаемую поверхность dS (м2), к ее площади: Е=dф/dS, измеряется в люксах (лк);

- яркость L поверхности под углом α к нормали –это отношение силы света dJα, излучаемой, освещаемой или светящейся поверхностью в этом направлении, к площади dS проекции этой поверхности, на плоскость, перпендикулярную к этому направлению: L = dф/(dScosα), измеряется в кд•м-2.

Для качественной оценки условий зрительной работы используют такие показатели как фон, контраст объекта с фоном, коэффициент пульсации освещенности, показатель освещенности, спектральный состав света.

Фон – это поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее световой поток. Эта способность (коэффициент отражения р) определяется как отношение отраженного от поверхности светового потока Фотр к падающему на нее световому потоку Фпад; р == Фотр/Фпад.

В зависимости от цвета и фактуры поверхности значения коэффициента отражения находятся в пределах 0,02...0,95; при р >0,4 фон считается светлым; при р = 0,2...0,4–средним и при р <0,2–темным.

Контраст объекта с фоном k – степень различения объекта и фона –характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, знаки, пятна, трещины, риски или других элементов) и фона;

k = (Lop–Lo)/Lop считается большим, если k>0,5 (объект резко выделяется на фоне), средним при k==0,2...0,5 (объект и фон заметно отличаются по яркости) и малым при k<0,2 (объект слабо заметен на фоне).

Коэффициент пульсации освещенности kЕ–это критерий глубины колебаний освещенности в результате изменения во времени светового потока. KЕ=100(Emax-Emin)/(2Eср), где Emax, Emin Ecp – максимальное, минимальное и среднее значения освещенности за период колебаний.

Показатель ослепленности Ро – критерий оценки слепящего действия, создаваемого осветительной установкой. Po=1000(V1/V2-1), где V1 и V2 –видимость объекта различения соответственно при экранировании и наличии ярких источников света в поле зрения.

Экранирование источников света осуществляется с помощью щитков, козырьков и т.п.

Видимость V характеризует способность глаза воспринимать объект. Она зависит от освещенности, размера объекта, его яркости, контраста объекта с фоном, длительности экспозиции. Видимость определяется числом пороговых контрастов в контрасте объекта с фоном, т.е. V=k/kпop, где kпор –пороговый или наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличим на этом фоне.

Форма светового пучка светодиода зависит от источника света и от линз. Есть два типа пучков:

- широкие пучки;

- узкие, сфокусированные пучки.

Каждый пучок имеет также остаточную компоненту, которая гораздо шире основного пучка. Этот периферийный свет делает налобный фонарь более универсальным и удобным для использования. Широкий пучок создает ближний свет для деятельности при медленном перемещении.

В сфокусированном пучке весь свет концентрируется для освещения на больших расстояниях, и пучок можно точно направить. Этот тип пучка предназначен для деятельности, связанной с быстрым движением или ориентировании на маршруте.

Существуют также несколько уровней освещения: максимальный, оптимальный и экономичный. Выбирая мощность пучка, пользователь приспосабливает освещение к своим нуждам. В дополнение к этим тремя уровням освещения, есть также мигающий режим для подачи сигнала (для спасения, указания пути, и т.д.) с исключительным временем работы.

Около 80% информации человек получает посредством зрения. Качество этой информации во многом зависит от освещения.

Действие света на организм человека многообразно. Уровень освещенности оказывает влияние на психические функции и физиологические процессы в организме человека. Хорошее освещение действует тонизирующе, стимулирует активность, предупреждает развитие утомления, повышает работоспособность.

Неправильное организованное освещение рабочих мест и рабочей зоны не только утомляет зрение, но и вызывает утомление всего организма в целом. Недостаточное освещение, слепящие источники света и резкие тени от оборудования и других предметов притупляют внимание, вызывают ухудшение или потерю ориентации работающего, что может быть причиной травматизма. Установлено, что неудовлетворительное освещение является причиной примерно 5% несчастных случаев на производстве. При недостаточной освещенности сокращается время ясного видения — время, в течение которого глаз человека сохраняет способность различать рассматриваемый объект.

Важное значение для безопасности труда имеет процесс зрительной адаптации, т.е. приспособлена к изменяющимся уровням освещенности. Световая адаптация при переходе к большей яркости происходит довольно быстро — в течение нескольких минут, приспособление к более низким уровням освещенности (темновая адаптация) — значительно медленнее, течение 30 минут и более. В процессе адаптации расширяется или сужается зрачок, поэтому частые переходы от одних уровней освещенности к другим приводят к развитию зрительного утомления. Излишняя яркость вызывает временное ослепление. Неравномерное освещение, требующее частой переадаптации глаз, может привести к профессиональным заболеваниям. Так что далеко не всегда действие света на организм человека положительное.

Недостаточное освещение приводит к сильному напряжению глаз, быстрой утомляемости, близорукости, снижению качества работы, увеличению брака. Слишком яркое освещение раздражает сетчатку глаза, ослепляет, глаза быстро устают, растёт производственный травматизм.

 

Рациональное освещение производственных помещений.

Рациональное освещение производственных помещений и рабочих мест способствует лучшему выполнению работающим своих обязанностей обеспечению комфортных условий труда. В нормальных документах по ОТ сформулированы основные требования к производственному освещению: достаточная освещенность рабочих поверхностей; равномерное распределение яркости; отсутствие резких теней; спектр светового потока должен быть близок к естественному; постоянство освещенности во времени.

Вопрос

Общие средства защиты от шума в производственной среде.

Для снижения шума в производственных помещениях применяют различные методы: уменьшение уровня шума в источнике его возникновения; звукопоглощение и звукоизоляция; установка глушителей шума; рациональное размещение оборудования; применение средств индивидуальной зашиты.

Наиболее эффективным является борьба с шумом в источнике его возникновения. Шум механизмов возникает вследствие упругих колебаний как всего механизма, так и отдельных его деталей. Причины возникновения шума - механические, аэродинамические и электрические явления, определяемые конструктивными и технологическими особенностями оборудования, а также условиями эксплуатации. В связи с этим различают шумы механического, аэродинамического и электрического происхождения. Для уменьшения механического шума необходимо своевременно проводить ремонт оборудования, заменять ударные процессы на безударные, шире применять принудительное смазывание трущихся поверхностей, применять балансировку вращающихся частей.

Снижения аэродинамического шума можно добиться уменьшением скорости газового потока, улучшением аэродинамики конструкции, звукоизоляции и установкой глушителей. Электромагнитные шумы снижают конструктивными изменениями в электрических машинах.

Широкое применение получили методы снижения шума на пути его распространения посредством установки звукоизолирующих и звукопоглощающих преград в виде экранов, перегородок, кожухов, кабин, облицовки стен, потолков, использование глушителей и др.

Звукоизолирующими кожухами закрывают наиболее шумные машины и механизмы, локализуя таким образом источник шума. Для машины, выделяющей теплоту (электродвигатели, компрессоры и т.п.), кожухи снабжают вентиляционными устройствами с глушителями. Кожух должен плотно закрывать источник шума, но при этом не соединяться жестко с механизмом, так как это дает отрицательный эффект - кожух становится дополнительным источником шума.

Экраны устанавливаются между источником шума и рабочим местом. Акустический эффект экрана основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. Степень проникновения зависит от соотношения между размерами экрана и длиной волны: чем больше длина волны, тем меньше при данных размерах область тени за экраном, а следовательно, меньше снижение шума. Поэтому экраны применяют в основном для защиты от средне- и высокочастотного шума, а при низких частотах они малоэффективны, так как за счет эффекта дифракции звук легко их огибает. Важно также расстояние от источника шума до экранируемого рабочего места: чем оно меньше, тем больше эффективность экрана. Экран оказывается эффективным тогда, когда отсутствуют огибающие его отраженные волны, т. е. либо на открытом воздухе, либо облицованном помещении.

Глушители шума применяются в основном для уменьшения шума различных аэродинамических установок и устройств. Они разделяются на адсорбционные, реактивные и комбинированные. Адсорбционные глушители, содержащие звукопоглощающий материал, поглощают поступившую в них звуковую энергию, а реактивные отражают ее обратно к источнику. В комбинированных глушителях происходит как поглощение, так и отражение звука.

Физическая сущность звукоизолирующих преград состоит в том, что наибольшая часть звуковой энергии отражается от специально выполненных массивных ограждений из плотных твердых материалов (металла, дерева, пластмасс, бетона и др.) и только незначительная часть проникает через ограждение. Уменьшение шума в звукопоглощающих преградах обусловлено переходом колебательной энергии в тепловую благодаря внутреннему трению в звукопоглощающих материалах. Хорошие звукопоглощающие свойства имеют легкие и пористые материалы (минеральный войлок, стекловата, поролон и т.п.).

Средствами индивидуальной защиты от шума являются ушные вкладыши, наушники и шлемофоны. Эффективность индивидуальных средств защиты зависит от используемых материалов, конструкции, силы прижатия, правильности ношения. Ушные вкладыши вставляют в слуховой канат уха. Их изготовляют из легкого каучука, эластичных пластмасс, резины, эбонита и ультратонкого волокна. Они позволяют снизить уровень звукового давления на 10... 15 дБ. В условиях повышенного шума рекомендуется применять наушники, которые обеспечивают надежную защиту органов слуха. Так, наушники ВЦНИОТ снижают уровень звукового давления на 7...38 дБ в диапазоне частот 125 … 8000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, которые герметично закрывают всю околоушную область и снижают уровень звукового давления на 30...40 дБ в диапазоне частот 125...8000 Гц.

К лечебно-профилактическим мероприятиям защиты от шума следует отнести применение функциональной музыки, санитарное просвещение, медицинские осмотры, а также организацию комнат акустической разгрузки.

Вопрос

Классификация помещений по степени опасности поражения электрическим током.

 

Степень безопасности обслуживания электрических установок во многом зависит от условий эксплуатации и характера среды помещений, в которых электрооборудование установлено.

Влага, пыль, едкие пары, газы, высокая температура разру­шительно действуют на изоляцию электроустановок, тем самым в значительно)! степени ухудшают условия безопасности.

В соответствии с правилами устройства електротехнических установок, все помещения, содержащие электроустановки, клас­сифицируются с точки зрения опасности поражения электриче­ским током на следующие три категории.

1. Помещения без повышенной опасности: сухие, не жаркие, с токонепроводящим полом, без токопроводящей пыли, а также помещения с небольшим количеством метал­лических предметов, конструкций, машин и т. п. или с коэффи­циентом заполнения площади k <; 0,2 (т. е. отношением пло­щади, занятой металлическими предметами, к площади всего помещения).

2. Помещения с повышенной опасностью: сырые, в которых при нормальных условиях влажность временно может повышаться до насыщения, как, например, при резких изменениях температуры или при выделении большого коли­чества пара; сухие, по неотапливаемые, чердачные помещения, неотапливаемые лестничные клетки и помещения отапливаемые, по с кратковременным присутствием влаги; помещения с токопроводящей пылью (угольные мельницы, волочильные цехи и дру­гие им подобные); жаркие, т. е. помещения с температурой свыше 30° С; помещения с токопроводящими полами (земляные, бетонные, деревянные в сыром состоянии).

3. Помещения особо опасные: особо сырые поме­щения; помещения с едкими парами, газами и охлаждающими жидкостями, разрушительно действующими на обычно употреб­ляемые в электрических установках материалы и снижающими сопротивление человеческого тела; помещения, в которых име­ются два или несколько признаков опасности (например, жаркое помещение и проводящий пол или сырое помещение с коэффи­циентом заполнения более 0,2 и т. д.).

С целью избежания произвольного толкования определений, вошедших в классификацию помещений, согласно правилам устройства электротехнических установок, сухими считаются помещения с относительной влажностью не выше 75% и темпе­ратурой не ниже +5° С, т. е. те, в которых пол, стены и все пред­меты нормально находятся в сухом состоянии; сырыми счи­таются помещения с относительной влажностью, которая по­стоянно превышает 75% или может временно повышаться до 100%, так как в этих помещениях может возникать значительная влажность при резком изменении температуры или при выде­лении большого количества пара.

Особо сырыми считаются помещения, в которых воздух постоянно насыщен водяными парами, т. е. относительная влаж­ность достигает 100% и в результате пол, потолок и все предметы постоянно покрыты влагой.

Помещениями с токопроводящей пылью назы- I,лютея такие, в которых в связи с характером производственных процессов может выделяться и собираться в большом количестве кжопроиодмщая пыль (например, угольная, металлическая). Эта iin.ii, препятствует поддержанию должного сопротивления изоля- цнн электроустановки, а также снижает сопротиплеиие чело­веческого тела.

Помещениями с едкими парами или газами счи­таются те, в которых при производственном процессе выделяются пары или газы, разрушительно действующие на изолирующие материалы, обычно применяемые в электроустановках. Вследствие этого необходимо принимать особые меры для защиты изоляции электрооборудования. Кроме разрушительного действия на изоляцию электрооборудования, эти пары и газы могут также значительно снизить сопротивление человеческого тела.

Жаркие помещения характеризуются высокой темпера­турой, вызывающей высыхание и разрушение изоляции, а также обильную транспирацию, повышающую опасность поражения током у лиц, находящихся в таких помещениях. Различают поме­щения жаркие — с температурой выше 30° С и особо жаркие — с температурой выше 35° С.

Пожароопасными помещениями считаются те, в кото­рых обрабатываются или хранятся легко воспламеняющиеся предметы или по условиям производства могут образоваться легко воспламеняющиеся газы, пары, пыль и волокна.

Взрывоопасными являются помещения, в которых изго­товляют, обрабатывают или хранят взрывчатые вещества или могут образоваться взрывчатые газы, пары, либо взрывчатая смесь их с воздухом.

Применение более совершенной технологии производства, хо­рошей вентиляции и герметизации дает возможность значительно снизить степень опасности большинства производственных поме­щений.

Особое значение для электробезопасности имеет токопроводимость пола. Сухие торцовые (без гвоздей) или паркетные полы обладают довольно большим сопротивлением и хорошо изоли­руют человека от земли. Наоборот, кирпичные, плиточные, бетон­ные или земляные полы, сопротивление которых резко умень­шается при увлажнении, являются плохой изоляцией.

Полы с высоким сопротивлением могут служить весьма эффективной мерой защиты. В цехах с хорошими торцовыми, паркетными или другими полами, имеющими большое сопротив­ление, однофазное прикосновение может оказаться менее опас­ным при поврежденной изоляции.

Как показывает анализ электротравм, на предприятиях с по­лами, имеющими высокое электрическое сопротивление, возмож­ность электропоражений при эксплуатации электрооборудования значительно уменьшается. Однако, при прикосновении к двум фазам одновременно изолирующие свойства пола не имеют зна­чения и поражение током неизбежно.

Вопрос