Обеспечение радиационной безопасности персонала. 1. Дозиметрия ионизирующих излучений

4. Тест-вопросы.

5. Литература.

1. Дозиметрия ионизирующих излучений.

1.1. Дозы для регистрации ионизирующих излучений.

Обязательным условием медицинского применения любого радиационного источника является предварительная количественная и качественная оценка его излучения, т.е. дозиметрия. Её главным понятием является «доза излучения». Дозы, применяемые для регистрации ионизирующих лучей, подразделяются на экспозиционные, поглощенные и эквивалентные.

Экспозиционные дозы.

Экспозиционная доза представляет собой дозу в воздухе, при отсутствии рассеивающих тел.. Экспозиционная доза характеризует ионизирующее действие рентгеновских и гамма-лучей энергией от 10 Кэв до 3 Мэв в воздухе. то есть количество пар ионов, образуемых в воздухе при прохождении рентгеновских лучей.. Единицей экспозиционной дозы излучения является рентген (Р), при этой дозе в 1 см3 образуется 2,08. 109 пар ионов, несущие суммарный заряд одного знака, равный одной абсолютной электрической единице заряда. В международной системе единиц (СИ) единицей экспозиционной дозы является кулон на килограмм (Кл/кг) - доза рентгеновского или гамма-излучения, при которой сумма ионов одного знака, созданных электронами в облучаемом воздухе массой 1 кг, равна одному кулону (Кл).

Соотношение этих единиц: 1 Р = 2,58.10-4 Кл/кг,

1 Кл/кг = 3870 Р

Экспозиционная доза излучения, отнесенная к единице времени, называется мощностью экспозиционной дозы.Например – р/час, мр/мин, мкр/сек. и т.д.

Мощность экспозиционной дозы – экспозиционная доза, рассчитанная на единицу времени. В СИ мощность экспозиционной дозы измеряется в амперах на килограмм (А/кг). Внесистемные единицы - это рентген в секунду (Р/сек), рентген в минуту (Р/мин) и рентген в час (Р/час). Например, средняя мощность экспозиционной дозы на поверхности Земли (т.е. радиационный фон, при котором мы живем), равен 20-30 мкР/час, что составляет 0,1-0,2 Р/год.

Поглощенные дозы.

Поглощеннаядоза является основным количественным показателем воздействия ионизирующих излучений на облучаемые ткани. Она характеризуется величиной энергии, поглощенной в единице массы облучаемого вещества. Единица поглощенной дозы – рад, который соответствует поглощению энергии излучения в 100 эрг в 1 г вещества: 1 рад = 100 эрг/г. По СИ поглощенная дозы обозначается в греях – Гр, который равен 1 Дж/кг.

Соотношение этих единиц: 1 рад = 0,01 Гр,

1 Гр = 100 рад.

Так как при РДИ и РНД поглощенная доза ионизирующего излучения распределяется неравномерно, для более точной характеристики дозного поля (дозное поле это распределение поглощенной дозы в глубине тканей) введены дополнительные виды поглощенных доз:

поверхностная доза – поглощенная доза в поверхностных слоях кожи;

гонадная доза – поглощенная доза в гонадах;

костномозговая доза – поглощенная доза в красном костном мозге,

интегральная доза – поглощенная доза в толще тканией, через которую прошли лучи.

Эквивалентные дозы.

Как известно, при одних и тех же экспозиционных дозах происходит неравномерное поглощение доз в разных тканях организма, в связи с чем различные виды излучений при одной и той же поглощенной дозе оказывают различное биологическое действие. Это как раз характерно для РДИ. А так как разные ткани обладают разной радиопоражаемостью, то и риск их повреждения будет разным при одной и той же дозе экспозиционной дозе. Для сопоставления дозовой нагрузки неравномерного облучения разных участков тела при РДИ, а значит и для оценки риска вредных биологических последствий независимо от того, облучается один органи или всё тело, введено понятие эквивалентной дозы – ЭД. Она, как и другие поглощенные дозы, характеризует энергию ионизирующего излучения произвольного вида в единице массы облучаемой среды, но применяется для а)оценки биологических последствий при хроническом облучении и б) для подсчета стохастического эффекта при облучении больших групп населения.

. стохастический эффект – повреждения, которые могут возникнуть от небольших доз; для стохастических эффектов нет порога, то есть нет зависимости от соотношения дозы и повреждающего эффекта.

.. нестохастический эффект – обязательные (видимые) повреждения в тканях и органах от больших доз, тяжесть которых зависит от дозы излучения; для нестохастических эффектов существует порог, то есть прямая зависимость доза - повреждающий эффект.

ЭД представляет собой величину поглощенной дозы (в грэях или радах), умноженную на переводный коэффициент – коэффициент качества, отражающий эффективность воздействия конкретного вида радиации. Единицей эквивалентной дозы является биологический эквивалент рентгена – бэр. 1 бэр = 1 рад.К (К – клоэффициент качества, зависящий от энергии излучения и вида ткани, например для мышечной ткани он равен 0,93). В системе СИ единицией эквивалентной дозы является зиверт Зв, а Зв, отнесенный к единице времени, называется мощностью дозы.

Соотношение этих единиц: 1 бэр = 0,01 Зв,

1 Зв = 100 бэр,

1 Зв = 1 Гр,

1 Зв = 100 рад.

При одинаковой эквивалентной дозе облучения риск возникновения рака в легких более вероятен, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения органов и тканей следует учитывать с разными коэффициентами радиационного риска (таблица 3). Умножив эквивалентную дозу на соответствующие коэффициенты и просуммировав их по всем органам и тканям, получим «эффективную эквивалентную дозу» (она также измеряется в Зв), отражающую суммарный эффект облучения для организма.

Таблица № 3. Коэффициенты радиационного риска для разных органов (тканей) человека для вычисления эффективной эквивалентной дозы (НРБ-99/2009).

 

Ткань (орган) Коэффициент радиационного риска
Половые железы 0,20
Красный костный мозг 0,12
Толстая кишка 0,12
Легкие 0,12
Молочная железа 0,05
Щитовидная железа 0,05
Поверхность костей 0,01
Кожа 0,01
Другие ткани 0,30
Остальные оргнаны Включают надпочечники, головной мозг, экстраторакальный отдел органов дыхания,вилочковую железу, тонкую кишку, поджелудочную железу, селезенку, матку, мышечную ткань. 0,05

Методы дозиметрии.

Измерение доз ионизирующих излучений осуществляют путем количественной регистрации физических, химических и биологических эффектов, возникающих при взаимодействии ионизирующих излучений с веществом или с живыми тканями организма. В соответствии с этим различают физические, химические и биологические методы дозиметрии (таблица 3).

Таблица № 4. Методы дозиметрии.

 

Физические Химические Биологические
Ионизационный Фотографический Оценка кожных реакций на облучение
Сцинтилляционный   Регистрация химии ческих реакций Цитологические эффекты. Выживаемость. Средняя продолжительность жизни.
Термолюминесцентный

 

В практической деятельности применяются, в основном, физические и химические методы дозиметрии. В качестве воспринимающих устройств в дозиметрах, построенных на принципе регистрации этих эффектов, обычно используют ионизационные камеры, газоразрядные и сцинтилляционные счетчики, полупроводниковые кристаллы и химические системы.

По целевому назначению дозиметры делятся на три группы: 1) дозиметры для измерения ионизирующих излучений в прямом пучке, которые применяют, главным образом, с целью измерения доз, используемых в лучевой терапии, а также при оценке лучевых нагрузок, получаемых больными при различных рентгенологических исследованиях; 2) дозиметры для контроля защиты от рентгеновского и гамма-излучения, с помощью которых измеряют мощности доз рассеянного излучения на рабочих местах персонала рентгеновских и гамма-терапевтических кабинетов, а также в смежных с ними помещениях; 3) дозиметры для индивидуального контроля облучения лиц, работающих в сфере действия ионизирующих излучений.