Электрическое сопротивление тела человека

Значение тока через тело человека сильно влияет на тяжесть электротравм. В свою очередь, сам ток согласно закону Ома определяется сопротивлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.

Сопротивление тела человека является комплексной переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, окружающей среды, центральной нервной системы, физиологических факторов. Электрическое сопротивление различных тканей тела человека не одинаково: кожа, кости, сухожилия и хрящи имеют относительно большое сопротивление, а мышечная ткань, кровь, лимфа, пот и особенно нервные пути, спинной и головной мозг – малое сопротивление.

Электрическое сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определяется сопротивлением кожи. Кожа состоит из двух основных слоёв: наружного (эпидермис), и внутреннего (дерма). Эпидермис состоит из мёртвых ороговевших клеток, лишён кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя 0,05 – 0,2 мм. В сухом и незагрязнённом состоянии его можно рассматривать как диэлектрик, обладающий большим удельным сопротивлением. Дерма состоит из волокон соединительной ткани. В этом слое находятся кровеносные и лимфатические сосуды, нервные окончания, корни волос, потовые и сальные железы. Дерма обладает малым сопротивлением току.

Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути тока. Основным фактором, определяющим величину полного сопротивления, является состояние кожного покрова в цепи тока. При сухой, чистой и неповреждённой коже сопротивление тела человека, измеренное при напряжении до 15 В, составляет 3…100 кОм. Если на участке кожи, где прикладываются электроды, удалить эпидермис, сопротивление тела составит 500…700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составит 300…500 Ом.

Электрическое сопротивление тела человека зависит от ряда факторов. Его могут снизить повреждения рогового слоя, увлажнение кожи, тепловое облучение, повышенная температура воздуха.

Сопротивление наружного слоя кожи Rн уменьшается с увеличением площади электродов и зависит от места их приложения, что объясняется различной толщиной эпидермиса, неравномерным распределением потовых желёз, неодинаковой степенью наполнения кровью сосудов кожи. Повышение напряжения, приложенного к телу человека, вызывает уменьшение его сопротивления, которое при напряжениях более 200 В соответствует сопротивлению внутренних тканей (Rвн).

При оценке опасности поражения электрическим током и расчёте защитных мер в электроустановках сопротивление тела человека (Rh)принимают равным 1 кОм.

       
 
   
 

На рис. 4.1 приведён упрощённый вариант эквивалентной схемы цепи протекания электрического тока через тело человека.

На рисунке обозначено: 1– электроды; 2 – эпидермис; 3 – внутренние ткани и органы тела человека, включая дерму; Íh – ток, протекающий через тело человека; Úh – напряжение, приложенное к электродам; Rн – активная составляющая сопротивления наружного слоя кожи; Cн – ёмкость условного конденсатора, обклад­ка­ми которого являются электрод и хорошо проводящие ток ткани тела человека, расположен­ные под эпидермисом, а диэлектриком – эпидермис; Rвн – активное сопротивление внутренних тканей, включая дерму.

Из схемы на рис. 4.1 следует, что комп­лекс­ное сопротив­ление тела человека опреде­ляется соотноше­нием:

где Xн = 1/ jw Cн – величина ёмкостной составляющей сопротивления тела человека;

w = 2p f , f – частота действующего тока.

Для практических применений используют модуль комплексного сопротивления тела человека:

4.1.4. Трёхфазные электрические сети и их основные параметры

 
 

Источниками питания современных электроустановок обычно являются трёхфазные электрические сети, которые представляют собой совокупность трёх источников напряжения переменного тока с частотой 50 Гц (понижающие трансформаторы или генераторы), обмотки которых соединены по схеме электрической звезды (рис. 4.2, а), и линий электропередач.

 

Общий вывод обмоток (общую точку электрической звезды), называют нейтралью (N) электрической сети, а три других вывода, к которым подключаются проводники линий электропередач, называют фазами (A, B, C). Напряжения переменного тока, генерируемые каждым источником трёхфазной сети, называются фазными напряжениями (ÚA , ÚB , ÚC). Они сдвинуты по фазе друг относительно друга на 120 электрических градусов (рис. 4.2, б).

 

Напряжения, действующие между любыми парами фаз электрической сети, называют линейными (ÚAB, ÚBC, ÚCA). При равенстве модулей фазных напряжений (|ÚA| = |ÚB| = |ÚC| = Uф) равными будут и модули линейных напряжений: |ÚAB|= |ÚBC| = |ÚCA| = Uл = Uф. Обычно Uл = 380 В, Uф = 220 В.

Линии электропередач в трёхфазных сетях могут быть воздушного или кабельного типа. В том и другом случае проводники электрической сети обладают некоторым активным сопротивлением изоляции и ёмкостью относительно земли: RA , RB , RC , RN и CA , CB , CC , CN (рис. 4.3). В дальнейшем с целью упрощения расчётов будем полагать, что RA = RB = RC = Rиз , CA = CB = CC = Cф.

 
 

Ёмкость фазного проводника относительно земли зависит от геометрических соотношений (высота подвеса, сечение, размеры) и диэлектрических свойств изоляции.

 
 

Комплексное сопротивление изоляции каждой фазы электрической сети относительно земли определяется как результат параллельного соединения активной (Rиз) и ёмкостной (Xф = 1/jwCф) составляющих: Źиз = Rиз || Xф = Rиз / (1 + jw RизCф). Аналогично определяется сопротивление ŹN для нейтрали.

Модуль комплексного сопротивления изоляции фазного проводника электрической сети относительно земли определяется по формуле:

где w = 2p f – круговая частота электрической сети;

f = 50 Гц – линейная частота электрической сети.

По действующим нормам в сети с напряжением до 1000 В активное сопротивление изоляции фаз относительно земли на участке между смежными предохранителями или за последним из них должно иметь величину не менее 500 кОм при отключенных потребителях. В разветвлённой электрической сети число таких параллельно подключенных участков может быть достаточно большим.

Ёмкость фаз относительно земли определяется типом линии (воздушная, проводная, кабельная), её геометрическими параметрами и не может быть уменьшена. Особенно большой ёмкость фаз может быть в кабельных линиях большой протяжённости, при этом соответственно уменьшается величина модуля комплексного сопротивления изоляции фаз и ослабляется её защитное действие.

В зависимости от режима нейтрали различают два наиболее распространённых типа электрических сетей:

• трёхфазная сеть с изолированной нейтралью (СИН);

• трёхфазная сеть с глухозаземлённой нейтралью (СЗН).

Нейтраль в СИН хорошо изолирована от земли, поэтому для данного типа сети можно считать, что ZN = | ŹN| ® ¥.

Нейтраль в СЗН подключена к специальному заземляющему устройству. Согласно требованиям ПУЭ сопротивление заземления ней­трали R0 в любое время года не должно превышать 4 Ом для фазных напряжений 220 В или для линейных напряжений 380 В.

Таким образом, общую схему трёхфазной электрической сети можно представить, как показано на рис. 4.3, где следует полагать ZN® ¥ для случая СИНи ZN » R0 для случая СЗН.

В трёхфазной сети различают нормальный (НР) и аварийный (АР) режимы работы. Нормальный режим характеризует исправное состояние электрической сети. При аварийном режиме одна из фаз оказывается замкнутой на землю через сравнительно малое сопротивление замыкания (Rзм), которое характеризует процесс растекания тока замыкания в грунте в точке максимального потенциала (т.е. непосредственно в точке контакта токоведуших элементов с грунтом). Обычно сопротивление замыкания составляет десятки или сотни Ом и реже – единицы Ом, например, когда провод замыкается на заземлённую металлическую конструкцию или падает в водный бассейн.