Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению

Понятие напряжения.

Напряжение - это физическая величина, характеризующая электрическое поле, которое создает ток.
Электри́ческое напряже́ние
между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы эффективного электрического поля (включающего сторонние поля), совершаемой при переносе пробногоэлектрического заряда из точки A в точку B, к величине пробного заряда.

Напряжение характеризует электрическое поле, создаваемое током.

Напряжение ( U ) равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.

Единица измерения напряжения в системе СИ:

[ U ] = 1 B


Понятие сопротивления.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождениюэлектрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1].

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса иволнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник. Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью. Электрической проводимостью называется способность материала пропускать через себя электрический ток. Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R,обозначается проводимость латинской буквой g.


 

5. Элементы электрических цепей. Активными элементами являются источники электрической энергии. Они подразделяются на источники напряжения – условное обозначение на рисунке. Пассивные элементы – элементы, которые не являются источниками электрической энергии. Они делятся на диссипативные и реактивные. Диссипативные элементы – элементы, осуществляющие диссипацию электрической энергии. Элементы с такими свойствами осуществляют преобразование электрической энергии в тепловую. Такими элементами являются резисторы. Они характеризуются электрическим сопротивлением, которое измеряется в омах (Ом). Реактивные элементы – элементы, способные накапливать электрическую энергию и отдавать ее либо источнику, от которого эта энергия была получена, либо передавать другому элементу. В любом случае этот элемент не превращает электрическую энергию в тепловую. Такими элементами являются катушка индуктивности и конденсатор. Электрической цепью называется такое соединение электрических элементов, при котором под воздействием источника электрической энергии в элементах протекает электрический ток. Узел – точка соединения трех и более элементов. Ветвь – участок цепи, содержащий хотя бы один элемент и находящийся между двумя ближайшими узлами. Контур – замкнутая часть электрической цепи. Перемычка – это электрический проводник с нулевым сопротивлением, подсоединенный своими концами к различным двум точкам схемы. Классификация электрической цепи осуществляется по следующим признакам: – наличие или отсутствие в цепи источника электрической энергии; – наличие или отсутствие в цепи диссипативных элементов; – в зависимости от характера вольтамперных характеристик электрических элементов; – в зависимости от количества выводов электрической цепи. Пассивной цепью называется цепь, не содержащая источника электрической энергии. В такой цепи присутствуют только диссипативные и реактивные элементы. Активной цепью называется цепь, содержащая хотя бы один источник электрической энергии. К активным цепям относятся цепи, содержащие и усилительные элементы – транзисторы и электронные лампы.


 

6. Закон Ома.
Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Немецкий физик Георг Ом(1787 -1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорционально напряжению U на концах проводника:
I = U/R
где R - электрическое сопротивление проводника.
Уравнение выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорционально сопротивлению проводника.
Участок цепи, в котором не действуют э.д.с. (сторонние силы) называют однородным участком цепи, поэтому эта формулировка закона Ома справедлива для однородного участка цепи.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Закон Ома. I= , где = R+ Ri

 


 

7. Первый закон Кирхгофа. Второй закон Кирхгофа.

1 закон Кирхгофа (относится к узловым точкам)

Алгебраическая сумма токов ветвей, образующих узел, равна 0: ∑i=0

Причём знак «+» присваивается току, входящему в узел, знак «-» - выходящему из узла.

Например i1+i2-i3-i4=0 (узел б)

Узлом называется такая точка схемы, где сходятся три и более ветвей.

m – число узлов

m-1- уравнение для решения

i1+i2-i3-i4=0 (узел б)

 

2 закон Кирхгофа (относятся к любому контуру);

Алгебраическая сумма ЭДС, действующих в контуре, равна алгебраической сумме падений напряжений на пассивных элементах этого контура, включая и внутреннее сопротивление источника:

∑Е=∑ri

Знак «+» присваивается ЭДС, совпадающего по направлению с обходом контура, знак «-» приписывается падению напряжения, если направление тока не совпадает с направлением обхода.

Наприм , для контура abfgdca, выбрав направление обхода по часовой стрелке ( см. рис.), второй закон Кирхгофа запишем так:

E1-E2=rii1-r4i2-r02i2-r5i2+r2i1+r01i1.

 

 

8. Мостовые цепи. Мостовая цепь, мост электрический, электрический четырёхполюсник, к одной паре зажимов (полюсов) которого подключен источник питания, а к другой - нагрузка. Классическая Мостовая цепь состоит из четырёх сопротивлений, соединённых последовательно в виде четырёхугольника (рис.), причём точки а, b, c и d называются вершинами. Ветвь, содержащая источник питания UП, называется диагональю питания, а ветвь, содержащая сопротивление нагрузки ZH - диагональю нагрузки или указательной диагональю. Сопротивления Z1, Z2, Z3 и Z4, включенные между двумя соседними вершинами, называются плечами Мостовая цепьДиагонали Мостовая цепь, как мостики, соединяют две противолежащие вершины (диагональ нагрузки, например, ранее так и называлась - мост). Схема, представленная нарис., известна в литературе как четырёхплечий мост.


9.Получение синусоидальной ЭДС. Действующие значения синусоидальных токов и напряжений.

Переменным током называется ток, периодически меняющийся по величине и направлению.

Получение переменного тока:

Пусть в однородном магнитном поле постоянного магнита равномерно вращается с угловой скоростью W рамка площадью S. Магнитный поток через рамку Ф=BScosa, где a – угол между нормалью к рамке .

Т.к. при равном. Вращении рамки угл. Скорость W=a/t, то угол а будет изменяться по закону а=wt, и формула примет вид: Ф=BScos(wt).

Т.к. при вращ. Рамки пересек. Её магн. Поток всё время меняется, то по закону эл. Инд. В ней будет наход. ЭДС инд.:

Е=dФ/dt =BSwsin(wt)=E0sin(wt)

Где Е0=BSw –амплитуда синусоидальной ЭДС

Таким образом в рамке возникает синусоидальный Эдс, а если замкнуть рамку на нагрузку, то в цепи потечёт синусоидальный ток.

Значение пер. Эдс ( а также тока и напряж) в данный мом. Времени называется мгновенным значением.

Величину стоящую под знаком синуса или косинуса, назыв. Фазой колебаний,описываемых этими формулами. Фаза определяет знач. Эдс в люб. Мом. Вр. t. Фаза измер. В градусах или в радианах. Величина f назыв. Частотой колеб, и она связана с круговой частотой соотнош: . Вр. Т одного полного измен. Эдс назыв. Периодом Эдс. Измен. Эдс со временем может быть изображено на временной диаграмме .

Частота колеб. Связана с Т

Если период измер в (с), то част. В ( Гц) в Росии -50 Гц( В сша -60 Гц)