Тема 2.3 Эксплуатация силовых трансформаторов и автотрансформаторов 2 страница
Схема автоматического пуска и остановки двигателей вентиляторов по температуре масла дополняется автоматикой включения дутья при достижении номинального тока трансформатора и отключения дутья — при снижении тока нагрузки ниже номинального.
У мощных трансформаторов и автотрансформаторов дутьевое охлаждение не обеспечивает полного отвода теплоты потерь. В этих случаях применяется система воздушно-масляного охлаждения с принудительной циркуляцией масла с помощью насосов и интенсивным обдувом охладителей вентиляторами, установленными на охладителях (рис. 71).
1 — бак трансформатора; 2 — охладитель; 3 — электронасос; 4 — вентиляторы для обдувания охладителя; 5 — адсорбционный фильтр; 6 — струйное реле
Рисунок 71 Схема воздушно-масляного охлаждения (система ДЦ)
Охладители представляют собой спаренные друг с другом калориферы. Каждый калорифер состоит из нескольких рядов труб, развальцованных в трубных досках или вваренных в них. Нагретое масло из верхней части бака забирается электронасосом и прогоняется через охладитель. Охлажденное масло возвращается в нижнюю часть бака и перемещается вверх благодаря конвекции.
Для увеличения теплоотдачи у крупных трансформаторов, выпускаемых отечественной промышленностью, движение масла внутри трансформатора упорядочено: охлажденное масло подается по специальным трубам к определенным частям обмоток, в результате чего создается организованная циркуляция масла по охлаждающим каналам. Такая система направленной циркуляции масла в обмотках более эффективна. Трансформаторы с искусственным охлаждением могут эксплуатироваться только при работающих вентиляторах дутья, насосах циркуляции масла и с включенной сигнализацией о прекращении подачи масла и остановке вентиляторов обдува.
При остановленном принудительном охлаждении не обеспечивается охлаждение трансформатора, даже если он не несет нагрузки. В случае прекращения принудительного охлаждения трансформатор мощностью до 250 MBА может оставаться в работе с номинальной нагрузкой в течение 1 ч, если температура верхних слоев масла не достигла 80 °С. Если трансформатор уже работал с предельной температурой 80 °С, то с выходом из работы охлаждающего устройства он может нести номинальную нагрузку в течение 10 мин или находиться в режиме XX не более 30 мин. По истечении указанного срока трансформатор должен быть отключен.
Управление двигателями системы охлаждения предусматривается автоматическое и ручное. Схема автоматического управления обеспечивает:
включение основной группы охладителей при включении трансформатора в сеть;
увеличение интенсивности охлаждения включением дополнительного охладителя при достижении номинальной нагрузки или определенной температуры масла в трансформаторе;
включение резервного охладителя при аварийном отключении любого из работающих;
включение резервного питания двигателей насосов и вентиляторов при исчезновении напряжения или его снижении ниже 85 %, а также переключение питания с резервного источника после восстановления напряжения в основной сети.
Ручное управление двигателями всей системы охлаждения и каждого охладителя производится ключами управления, положение которых проверяется внешним осмотром перед включением трансформатора в сеть.
Система масловодяного охлаждения с принудительной циркуляцией масла и охлаждающей воды является наиболее эффективной, но менее удобной в эксплуатации, чем рассмотренная выше система с принудительной циркуляцией масла. Для ее применения необходим мощный источник водоснабжения и должны предусматриваться меры по предотвращению замораживания водяных магистралей, насосов и прочей аппаратуры в зимнее время.
1 — бак трансформатора; 2 — электронасос; 3 — охладитель; 4 — адсорбционный фильтр; 5 — сетчатый фильтр; 6 — дифференциальный манометр; 7, 8 —манометры; 9, 10 — термометры
Рисунок 72 Схема масловодяного охлаждения (система Ц)
Система охлаждения (рис. 72) состоит из одного или нескольких водяных маслоохладителей, двух-трех маслонасосов, трубопроводов, измерительной и защитной, аппаратуры. Горячее масло из верхней части бака трансформатора перекачивается центробежными насосами через маслоохладитель, охлаждается в нем циркулирующей водой и возвращается в нижнюю часть бака.
Маслонасосы устанавливаются по ходу масла перед маслоохладителем, чтобы исключить подсосы воды в масло в случае образования неплотностей и трещин в маслоохладителе. С этой же целью давление масла в маслоохладителе поддерживается выше давления воды не менее чем на 20 кПа. Охлаждающая вода подается из водопроводной сети или из естественных водоемов (рек, озер).
Включение в работу масловодяного охлаждения производится после включения трансформатора в сеть: сначала включают в работу масляный насос и проверяют циркуляцию в маслоохладителе, затем подают охлаждающую воду и проверяют соотношение давлений воды и масла. При необходимости производится регулирование давления. Маслоохладители в системе масловодяного охлаждения снижают температуру масла на 10—15°С и способны поддерживать температуру верхних слоев масла при номинальной нагрузке на уровне 50—55°С. Поэтому подачу охлаждающей воды в маслоохладители производят при температуре масла не ниже 15 °С. Отключение масловодяного охлаждения производится после отключения трансформатора от сети: сначала прекращают доступ воды в маслоохладитель, а затем отключают маслонасос.
Нагрузка трансформатора с системами охлаждения Ц и ДЦ при отключении части работающих охладителей должна быть уменьшена пропорционально числу отключенных охладителей:
Число работающих охладителей, % 100 90 80 70 60 50 40 30
Допустимая нагрузка, % номинальной 100 90 80 70 60 50 40 30
Обслуживание систем охлаждения заключается в наблюдении за работой и уходе за оборудованием, используемым в системах охлаждения. Осмотры систем охлаждения оперативным персоналом производятся одновременно с осмотром трансформаторов. При осмотрах проверяется: отсутствие течей масла из систем охлаждения; работа охладителей по их нагреву, определяемому на ощупь (у транс, форматоров с охлаждением ДЦ — по нагреву и по показаниям манометров, установленных вблизи маслоперекачивающих насосов); отсутствие нагрева, шума и вибрации маслоперекачивающих насосов; работа адсорбционных фильтров (ощупыванием рукой); состояние креплений маслопроводов, насосов и вентиляторов; работа вентиляторов — по отсутствию вибрации, скрежета и задеваний крыльчаток за кожух.
Уход за оборудованием систем охлаждения включает в себя устранение обнаруженных при осмотрах неисправностей, замену износившихся деталей (лопаток, крыльчаток, подшипников), чистку охладителей и вентиляторов, смазку подшипников, контроль сопротивления изоляции электродвигателей. При уходе за охладителями системы охлаждения Ц выполняются периодические очистки труб и водяных камер от ила и других отложений на поверхностях охлаждения.
Эффективность работы систем охлаждения в целом проверяется по температуре верхних слоев масла в трансформаторе. При исправном охлаждении и номинальной нагрузке максимальные температуры верхних слоев масла не должны превышать: в трансформаторах с охлаждением М и Д — 95 °С; с охлаждением ДЦ — 75 °С и с охлаждением Ц—70 °С.
«Регулирование напряжения
и обслуживание регулирующих устройств»
При регулировании напряжения переключением ответвлений обмоток трансформаторов изменяют их коэффициенты трансформации, что дает возможность поддерживать на шинах НН (СН) подстанций напряжение, близкое к номинальному, когда первичное напряжение отклоняется по тем или иным причинам от номинального.
Переключают ответвления на отключенных от сети трансформаторах устройствами ПБВ (переключения без возбуждения) или на работающих трансформаторах под нагрузкой устройствами РПН (регулирования под нагрузкой).
Устройствами ПБВ снабжаются почти все трансформаторы. Они позволяют регулировать напряжение ступенями относительно номинального ±5; ±2,5 %; Uном. Применяются ручные трехфазные и однофазные переключатели. Однофазный переключатель барабанного типа, устанавливаемый на каждой фазе обмотки ВН, показан на рис. 73
1— отводы; 2 — текстолитовые основания; 3 — контактные кольца; 4— полый токоведущий стержень; 5 — коленчатый вал; 6 — изолирующая штанга: 7 — ручной привод; 8 — крышка бака; 9 — ярмовая балка; 10 — деревянная рама; 11 — текстолитовая шпилька; 12—защитные бумажио-бакелитовые цилиндры; 13 — переключатель
Рисунок 73 Переключатель ответвлений барабанного типа (а) и крепление его к ярмовой балке трансформатора (б)
Контактная система переключателя состоит из неподвижных контактных стержней 4, соединенных с отводами 1, и подвижных контактных колец 3, замыкающих между собой различные пары неподвижных контактов. Контактные кольца перемещаются коленчатым валом 5, ось которого при помощи изолирующей штанги 6 соединяется с приводом на крышке трансформатора 7. Переключатель смонтирован на изолирующих основаниях 2.
Трансформаторы с РПН имеют большее число регулировочных ступеней и более широкий диапазон регулирования (до 20 %), чем трансформаторы с ПБВ. Применяемые схемы трансформаторов с РПН представлены на рис. 74. Часть обмотки ВН с ответвлениями называется регулировочной обмоткой. Расширение регулировочного диапазона без увеличения числа отводов достигается применением схем с реверсированием (рис. 74,б). Переключатель-реверсор 5 позволяет присоединять регулировочную обмотку 3 к основной / согласно или встречно, благодаря чему диапазон регулирования удваивается. У трансформаторов устройства РПН обычно включаются со стороны нейтрали, что позволяет выполнять их с пониженной на класс напряжений изоляцией.
1, 2— обмотки ВН и НН;— регулировочная обмотка;— переключающее устройство; 5 — реверсор
Рисунок 74 Схемы трансформаторов с регулированием напряжения под нагрузкой:
а — без реверсирования регулировочной обмотки; б — то же с реверсированием
1-регулировочная обмотка; 2 — переключающее устройство
Рисунок 75 Схемы регулирования напряжения на автотрансформаторах:
а —в нейтрали; б - на стороне ВН; в — на стороне СН
На рис. 75 показаны схемы регулирования на автотрансформаторах. Регулирование со стороны нейтрали (рис. 75, а) называют связанным, так как при переключении одновременно меняется число витков обмоток ВН и СН, что вызывает колебания индукции в магнитопроводе и напряжения на зажимах обмотки НН. Чтобы избежать недостатков связанного регулирования, применяют схемы раздельного регулирования с включением РПН со стороны линейных вводов ВН (рис. 75,б) или СН (рис. 75,в). Такие схемы удобны в эксплуатации, но устройства РПН в этих случаях должны быть более высокого класса напряжения.
Устройство РПН состоит из следующих основных частей: контактора, разрывающего и замыкающего цепь рабочего тока в процессе коммутации; избирателя, контакты которого размыкают и замыкают электрическую цепь без тока; токоограничивающего сопротивления (реактора или резистора); приводного механизма. Последовательность работы устройств РПН с реактором (серий РНО, РНТ) и с резистором (серий РНОА, РНТА) показаны на рис. 76. Необходимая очередность в работе контакторов и избирателей обеспечивается приводным механизмом с реверсивным пускателем. В переключающем устройстве РПН с реактором реактор рассчитан на длительное прохождение номинального тока. В нормальном режиме работы через реактор проходит только ток нагрузки. В процессе переключения ответвлений, когда часть регулирующей обмотки оказывается замкнутой на реактор (рис. 76,в), он ограничивает до приемлемых значений ток Iцирк, проходящий в замкнутом контуре.
Реактор и избиратель, на контактах которого дуги не возникает, обычно размещают в баке трансформатора, а контактор помещают в отдельном масляном баке, чтобы не допускать разложения электрической дугой масла, находящегося в трансформаторе.
Действие переключающих устройств РПН с резисторами во многом сходно с работой РПН с реактором. Отличие состоит в том, что в нормальном режиме работы резисторы закорочены или отключены и ток по ним не проходит, а в процессе коммутации ток проходит в течение сотых долей секунды. Резисторы не рассчитаны на длительную работу под током, поэтому переключение контактов в них происходит быстро под действием мощных сжатых пружин. Резисторы имеют небольшие размеры и являются, как правило, конструктивной частью контактора.
Устройства РПН приводятся в действие дистанционно со щита управления и автоматически от устройств регулирования напряжения.
Р-реактор; R1 и R2 – резисторы; П- переключатели (избиратели); К1- К4 – контакторы; РО- регулировочная обмотка
Рисунок 76 Последовательность работы переключающих устройств РПН с реактором (а-ж) и с резистором (з-н)
Для автоматического управления РПН снабжаются блоками автоматического регулирования коэффициента трансформации (АРКТ). Структурная схема блока АРКТ показана на рис. 77. Регулируемое напряжение подается на зажимы блока АРКТ от трансформатора напряжения. Кроме того, устройством токовой компенсации ТК учитывается еще падение напряжения от тока нагрузки. На выходе блока АРКТ исполнительный орган И управляет работой приводного механизма. Схемы блоков АРКТ весьма разнообразны, но все они содержат элементы, указанные на рис. 77.
1 — регулируемый трансформатор; 2 — трансформатор тока; 3 — трансформатор напряжения; ТК — устройство токовой компенсации; ИО — измерительный орган; У — орган усиления; В — орган выдержки времени; И — исполнительный орган; ИЛ — источник питания; ПМ — приводной механизм
Рисунок 77 Структурная схема блока автоматического регулирования напряжения
«Обслуживание устройств регулирования напряжения»
Перестановка переключателей ПБВ с одной ступени на другую в эксплуатации производится редко (2—3 раза в год при сезонном регулировании). При длительной работе без переключения контактные стержни и кольца покрываются пленкой окиси. Чтобы разрушить эту пленку и создать хороший контакт, рекомендуется при каждом переводе переключателя предварительно прокручивать его (не менее 5—10 раз) из одного крайнего положения в другое. При пофазном переводе переключателей проверяется их одинаковое положение. Приводы переключателей на каждой ступени фиксируются стопорными болтами.
Устройства РПН должны постоянно находиться в работе с включенными блоками АРКТ. На дистанционное управление РПН переводят только при неисправности блоков АРКТ. При осмотрах РПН сверяют показания указателей положения переключателей на щите управления и на приводах РПН, так как по ряду причин возможно рассогласование сельсина-датчика и сельсина-приемника. Проверяется также одинаковое положение переключателей РПН всех параллельно работающих трансформаторов или отдельных фаз при пофазном управлении.
Наличие масла в баке контактора проверяется по маслоуказателю. Уровень масла следует поддерживать в допустимых пределах. При пониженном уровне масла увеличивается время горения дуги на контактах. Превышение нормальной отметки уровня масла обычно наблюдается при нарушении уплотнений отдельных узлов масляной системы.
Нормальная работа контакторов гарантируется при температуре масла не ниже —20 °С. При более низкой температуре масло сильно густеет и контактор испытывает значительные механические нагрузки, которые могут привести к его поломке. Кроме того, возможно повреждение резисторов из-за увеличения времени переключения и более длительного пребывания их под током. Чтобы избежать указанных повреждений, при понижении температуры окружающего воздуха до —15 °С должна включаться система автоматического обогрева контакторов.
В процессе регулирования напряжения переключением ответвлений с помощью устройств ПБВ или РПН персонал не должен допускать длительного повышения напряжения на трансформаторе сверх номинального для данного ответвления .
При параллельной работе двух регулируемых трансформаторов и более изменение их коэффициентов трансформации следует производить по возможности одновременно, чтобы избежать перегрузки уравнительным током. При автоматическом управлении РПН эта роль выполняется специальной блокировкой. Если же автоматическое управление отсутствует, переключение ответвлений следует производить постепенно, не допуская рассогласования по ступеням ответвлений более чем на одну ступень.
Контакторы РПН обычно выводятся в ремонт после выполнения 20—30 тыс. операций под током. При этом заменяются обгоревшие контакты, заменяется масло.
«Включение в сеть и контроль за работой»
Перед включением трансформатора в сеть из резерва или после ремонта производится осмотр как самого трансформатора, так и всего включаемого с ним оборудования. При этом проверяются: уровень масла в расширителе и вводах трансформатора; исправность и пусковое положение оборудования системы охлаждения; правильное положение указателей переключателей напряжения; положение заземляющего разъединителя и состояние разрядников в нейтрали; отключен ли дугогасящий реактор; состояние фарфоровых изоляторов и покрышек вводов, а также шинопроводов и экранированных токопроводов.
Если трансформатор находился в ремонте, то обращается внимание на чистоту рабочих мест, отсутствие закороток, защитных заземлений и посторонних предметов на трансформаторе и оборудовании трансформатора.
Включение трансформатора в сеть производится толчком на полное напряжение со стороны питания (сетевых трансформаторов со стороны обмотки ВН). Включение часто сопровождается сильным броском тока намагничивания. Однако автоматического отключения трансформатора дифференциальной токовой защитой при этом не происходит, так как она отстраивается от тока намагничивания при первом опробовании трансформатора напряжением, что позволяет избежать ложных срабатываний ее при всех последующих включениях.
При включении трансформатора в работу не исключено появление на нем сразу номинальной нагрузки. Включение на полную нагрузку разрешается при любой отрицательной температуре воздуха трансформаторов с системами охлаждения М и Д и не ниже —25 °С трансформаторов с системами охлаждения ДЦ и Ц. Если температура воздуха, а следовательно, и масла в трансформаторе окажется ниже указанной, ее поднимают включением трансформатора на холостой ход или под нагрузку не более 50 % номинальной. В аварийных ситуациях этих ограничений не придерживаются (что, естественно, отражается на износе изоляции обмоток).
Повышение вязкости масла в зимнее время учитывается при включении в работу не только самого трансформатора, но и его охлаждающих устройств. Циркуляционные насосы серии ЭЦТ надежно работают при температуре перекачиваемого масла не ниже -—25 °С, а серии ЭЦТЭ — не ниже —20 °С. Поэтому при включении трансформаторов в работу циркуляционные насосы систем охлаждения включаются лишь после предварительного нагрева масла до указанных значений температур. Во всех остальных случаях насосы принудительной циркуляции масла должны автоматически включаться в работу одновременно с включением трансформатора в сеть. Вентиляторы охладителей при низких температурах масла должны включаться в работу, когда температура масла достигнет 45 °С.
Контроль за нагрузками трансформаторов, находящихся в работе, производится по амперметрам, на шкалах которых должны быть нанесены красные риски, соответствующие номинальным нагрузкам обмоток. Одновременно с контролем значения тока проверяется равномерность нагрузки по фазам. У автотрансформаторов контролируется также ток в общей обмотке.
При номинальных токах трансформаторы могут работать неограниченно долго, если условия охлаждения соответствуют номинальным.
В реальных условиях трансформаторы работают с переменной нагрузкой, причем большую часть суток и особенно в ночное время их нагрузка ниже номинальной. При таких условиях работы естественный износ их изоляции уменьшается. Недоиспользованные ресурсы изоляции без ущерба для срока службы трансформатора используются в эксплуатации путем систематических перегрузок, устанавливаемых в зависимости от характера суточного графика нагрузки, температуры охлаждающей среды и недогрузок в летнее время. Допустимое значение перегрузки и ее продолжительность определяются по графикам нагрузочной способности трансформаторов согласно ГОСТ 14209-69. Перегрузка трансформаторов в этом случае не должна превышать 50 % его номинальной мощности.
В аварийных случаях (например, при выходе из работы одного из трансформаторов и отсутствии резерва) допускается аварийная перегрузка оставшихся в работе трансформаторов. Перегрузка разрешается независимо от значения предшествующей нагрузки трансформатора и температуры охлаждающей среды в следующих пределах:
Перегрузка по току, °/о номинальной нагрузки 30 45 60 75 100 200
Длительность перегрузки, мин 120 80 45 20 10 1,5
Приведенные данные аварийной перегрузки распространяются на все масляные трансформаторы и автотрансформаторы, кроме тех, перегрузка которых ограничена заводом-изготовителем.
Контроль за напряжением, подведенным к трансформатору, производится по вольтметрам, измеряющим напряжение на шинах.
Превышения напряжения на трансформаторах сверх номинального допускаются в сравнительно небольших пределах: длительно на 5 % при нагрузке не выше номинальной и на 10 % при нагрузке не выше 25 % номинальной; длительно до 10% для станционных трансформаторов, работающих в блоке с генератором, автотрансформаторов без ответвлений со стороны нейтрали и регулировочных трансформаторов при нагрузке не выше номинальной, Превышение указанных напряжений приводит к перенасыщению магнитопровода, резкому увеличению тока и потерь XX. При этом потери в стали возрастают пропорционально квадрату напряжения. Увеличение потерь в стали является причиной местных нагревов стальных конструкций магнитопровода.
Контроль за тепловым режимом трансформаторов сводится к периодическим измерениям температур верхних слоев масла в баках. Измерения производятся при помощи стеклянных термометров, погруженных в специальные гильзы на крышках трансформаторов, дистанционных термометров сопротивления и термометров манометрического типа — термосигнализаторов. Периодические осмотры. Трансформаторы осматриваются без отключения в следующие сроки: главные трансформаторы и трансформаторы собственных нужд станций и подстанций с постоянным дежурством персонала — 1 раз в сутки; трансформаторы подстанций и гидростанций без постоянного дежурства персонала — не реже 1 раза в месяц.
Осмотры производятся также и при действии сигнализации о нарушении режима работы трансформаторов или систем их охлаждения, при срабатывании устройств релейной защиты или автоматики. При стихийных бедствиях (пожары, землетрясения и т.д.) трансформаторы должны осматриваться немедленно.
Цель периодических осмотров — проверка условий работы трансформаторов и выявление неполадок, которые при развитии могут привести к аварийным повреждениям. При осмотре проверяется внешнее состояние систем охлаждения, устройств регулирования напряжения под нагрузкой, устройств защиты масла от окисления и увлажнения, фарфоровых и маслонаполненных вводов, защитных разрядников на линейных вводах и в нейтралях, кранов, фланцев и люков, а также резиновых прокладок и уплотнений (они не должны набухать и выпучиваться); отсутствие течей масла и уровень его в расширителях, целость и исправность приборов (термометров, манометров, газовых реле), маслоуказателей, мембран выхлопных труб; исправность заземления бака трансформатора; наличие и исправность средств пожаротушения, маслоприемных ям и дренажей; состояние надписей и окраски трансформаторов.
Отключение трансформатора от сети, как правило, производят выключателями сначала со стороны нагрузки, а затем со стороны питания. На подстанциях с упрощенной схемой (без выключателей со стороны ВН) отключение трансформаторов со стороны нагрузки производят выключателями, а со стороны питания — отделителями.
Параллельная работа трансформаторов»
Параллельная работа трансформаторов с нагрузками, пропорциональными их номинальным мощностям, возможна при равенстве первичных и вторичных напряжений (равенстве коэффициентов трансформации), равенстве напряжений КЗ и тождественности групп соединения обмоток.
При включении на параллельную работу трансформаторов с различными коэффициентами трансформации напряжения на зажимах их вторичных обмоток будут различными. Разность вторичных напряжений вызывает прохождение уравнительных токов. Значение уравнительного тока может быть подсчитано по формуле
где ∆U = U1—U2 — разность вторичных напряжений трансформаторов; ZK1 и ZK2 — полные сопротивления КЗ первого и второго трансформаторов, определяемые по формуле
где uк % — напряжение КЗ.
Пример. Два трансформатора с разными значениями вторичных напряжений включаются на параллельную работу. Трансформаторы имеют следующие технические данные: S1 = S2=40 МВ-А; U1= 10,5кВ; U2=10 кВ; uк1 = uк2=8,5 %; группы соединения обмоток У/Д-11. Определить уравнительный ток после включения трансформаторов на параллельную работу.
Решение. Номинальные токи трансформаторов
Разность вторичных напряжений ∆U= 10 500—10 000=500 В. Уравнительный ток
Уравнительные токи, загружая обмотки трансформаторов, увеличивают потери энергии и снижают суммарную мощность подстанции, поэтому прохождение их недопустимо. В связи с этим согласно ГОСТ 11677-75 у трансформаторов, включаемых на параллельную работу, коэффициенты трансформации не должны отличаться более чем на ±0,5%.
Различие в значениях напряжений КЗ трансформаторов обусловливает распределение между ними общей нагрузки пропорционально их номинальным мощностям и обратно пропорционально напряжениям КЗ:
где S — общая нагрузка; S1/ и S/2 —реальные нагрузки трансформаторов; Sном1 и Sном2 — номинальные мощности трансформаторов; uк1 и uк2 — напряжение КЗ трансформаторов; uк/ —эквивалентное напряжение КЗ параллельно включенных трансформаторов.
Из формулы следует, что большую нагрузку примет на себя трансформатор с меньшим значением напряжения КЗ.
Пример. На параллельную работу включаются два трансформатора мощностью Sном1 = Sном2= 40 МВ-А, имеющих напряжения КЗ uк1 = 8,5 %; uк2=7,5 %. Суммарная нагрузка потребителей S'=80 МВ-А. Определить распределение нагрузки между трансформаторами.
Наилучшее использование установленной мощности трансформаторов может быть только при равенстве напряжений КЗ. Однако в эксплуатации допускается включение на параллельную работу трансформаторов с отклонением напряжений КЗ от их среднего значения, но не более чем на ±10 %. Это допущение связано с возможным отступлением (в пределах производственных допусков) при изготовлении трансформаторов в размерах обмоток, влияющих на uк.