Слайд 5) Историческая справка

Введение

«Решение задач – практическое искусство, подобное

плаванию, катанию на лыжах или игре на фортепиано;

научиться ему можно, только подражая хорошим

образцам и постоянно практикуясь»

Д. Пойя

 

Увлечение математикой часто начинается с размышления над какой-то особенно понравившейся задачей. Богатым источником таких задач служат различные олимпиады – школьные, городские, дистанционные, международные. Готовясь к олимпиадам, мы рассмотрели множество разноплановых заданий и выделили группу задач, подход к решению которых нам показался интересным и оригинальным. Это задачи на разрезание. У нас возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на разрезание.

Актуальность (Слайд 2)

n Математики открывают новые связи между математическими объектами. В результате этой работы находятся общие методы для решения различных задач. И эти задачи получают стандартные методы решения, переходя из разряда творческих в разряд технических, то есть требующих для своего решения применения уже известных методов.

n Задачи на разрезание помогают как можно раньше формировать геометрические представления у школьников на разнообразном материале. При решении таких задач возникает ощущение красоты, закона и порядка в природе.

Объект исследования: задачи на разрезание

Предмет исследования: многообразие задач на разрезание, методы и приёмы их решения.

Методы исследования: моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

(Слайд3) Основная цель исследования заключается в расширении знаний о многообразии задач на разрезание.

Для достижения поставленной цели предусматриваем решение следующих задач: ( Слайд 4)

  • подобрать необходимую литературу
  • научиться разрезать геометрические фигуры на части, необходимые для составления той или иной другой геометрической фигуры, используя их свойства и признаки;
  • научиться доказывать, что площади фигур равны, разрезая их на определенные части и доказывая, что эти фигуры равносоставленные;
  • провести геометрическое исследование, конструирование в решении задач различных типов.
  • отобрать материал для исследования, выбрать главную, интересную, понятную информацию
  • проанализировать и систематизировать полученную информацию
  • найти различные методы и приёмы решения задач на разрезание
  • классифицировать исследуемые задачи

· найти способы перекраивания: треугольника в равносоставленный параллелограмм; параллелограмма в равносоставленный треугольник; трапеции в равносоставленный треугольник.

· Создать электронную презентацию работы

Гипотеза: возможно, многообразие задач на разрезание, их «занимательность», отсутствие общих правил и методов решения вызывают у школьников затруднения при их рассмотрении. Предположим, что при более внимательном исследовании задач на разрезание, мы убедимся в их востребованности, оригинальности, полезности.

При решении задач на разрезание нам не понадобится знание основ планиметрии, а будут нужны именно смекалка, геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

Слайд 5) Историческая справка

Задачи на разрезание, как один из видов головоломок, привлекали к себе внимание с древнейших времен. Первый трактат, в котором рассматриваются задачи на разрезание, написал знаменитый арабский астроном и математик из Хорасана Абу аль – Вефа ( 940 – 998 н.э. ). В начале XX века благодаря бурному росту периодических изданий решение задач на разрезание фигур на то или иное число частей и последующее составление из них новой фигуры привлекает внимание как средство развлечения широких слоев общества. Теперь и геометры всерьёз занялись этими задачами, тем более, что в их основе лежит старинная задача о равновеликих и равносоставленных фигурах, которая исходит еще от античных геометрах. Известными специалистами в этом разделе геометрии были знаменитые классики занимательной геометрии и составители головоломок Генри Э. Дьюдени и Гарри Линдгрен.

Энциклопедией решения различных задач на разрезание является книга Гарри Линдгрена «Геометрия разрезаний». В этой книге можно найти рекорды по разрезанию многоугольников на заданные фигуры

Рассматривая решения задач на разрезание понимаешь, что универсального алгоритма или метода не существует. Иногда начинающий геометр в своем решении может значительно превзойти более опытного человека. Это простота и доступность является основой популярности игр основанных на решении таких задач, например- ( Слайд 6) пентамино «родственницы» тетриса, танграмма.