VII. Перспективы развития ИИС в управлении знаниями

 

Рассматривая тенденции развития Интеллектуальных информационных систем в управлении знаниями, следует отметить следующие основные направления, связанные с разработкой моделей и методов реализации отдельных аспектов получения и преобразования знаний:

1. Технологии извлечения и представления знаний. В первом случае основной задачей является разработка методов: формального описания "признаков знаний" (поисковых образов); формализации ПрО; распознавания и сравнения образов; извлечения знаний из экспертов, статистики, текстов, "опыта" и т.п. Во втором - решаются задачи, связанные с формализацией знаний для их представления в памяти интеллектуальных систем (ИС). Решение этих задач позволяет разработчикам комплексных технологий получить ответы на три принципиально важных вопроса: какие знания необходимо представлять в ИС, кто (что) является источником этих знаний, какие методы и модели обеспечивают адекватное представление этих знаний в ИС.

2. Технологии манипулирования знаниями, решение интеллектуальных задач предполагает не только представление знаний в ИС, но и их обработку, т.е. необходимо научить ИС оперировать ими. Поэтому здесь изучаются вопросы пополнения знаний на основе их неполных описаний, классификации знаний в ИС, разрабатываются процедуры и методы обобщения знаний, достоверного вывода и др.

3. Технология общения. Переход к ИС знаменует новую технологию общения конечных пользователей с ЭВМ и требует решения таких проблем, как понимание связных текстов на ограниченном и неограниченном естественном языке, понимание речи и ее синтез, разработка коммуникативных моделей "пользователь-ЭВМ", формирование объяснений и т.п. Главная цель данных исследований - обеспечение комфортных условий для общения человека и ИС.

4. Технологии восприятия. Разработка этих технологий предполагает создание методов: анализа трехмерных сцен, представления информации о зрительных образах в базе знаний ИС, трансформации зрительных сцен в текстовые описания и обратно, а также разработку процедур когнитивной графики и др.

5. Технологии обучения. Отличительной особенностью ИС должна стать их способность решать задачи, в явном виде не представленные в БЗ, что требует наделения ИС способностью к обучению. Для этих целей необходимо: создать методы формирования условий задачи по описанию проблемной ситуации или по наблюдению за этой ситуацией, обеспечить переход от известного решения частных задач к решению общей задачи, наделить ИС способностью декомпозировать исходную задачу на более мелкие, решение которых известно, разработать нормативные и декларативные модели самого процесса обучения, создать теорию подражательного поведения и др.

6. Технологии поведения. Взаимодействие ИС со средой требует разработки специальных поведенческих процедур, которые бы позволили им адекватно реагировать на те или иные изменения в среде. Такое взаимодействие предполагает создание моделей целесообразного, нормативного и ситуативного поведения, а также разработку методов многоуровневого планирования и коррекции планов в динамических ситуациях.

 

Заключение

 

Области применения существующих на сегодняшний день систем ИИ охватывает множество сфер: медицинскую диагностику, интерпретацию геологических данных, научные исследования в химии и биологии, военное дело, производство, финансы и другие области. Однако, несмотря на значительные успехи в области ИИ, пока еще существует определенный разрыв между техническими разработками, программными средствами ИИ и возможностями их более широко практического применения в частности, в экономике.

Наиболее показательным сектором, аккумулирующим различные проблемные направления экономической области, является управление промышленным предприятием. На его примере особенно хорошо видны преимущества использования систем ИИ для решения как различных предметных задач, так и для управления интегрированной системой предприятия в целом.

Существует множество доводов в пользу того, что системы искусственного интеллекта могут и должны стать важнейшей составной частью в технологии современных производств. Основными из них являются:

- преодоление сложности (сложности управления возникают тогда, когда

приходится делать выбор из множества возможных решений);

- управление предприятием требует организации больших объемов информа­ции;

- как уменьшить информацию до того уровня, который необходим для принятия решения (потеря информации, поступающей от объектов, работающих в реальном
режиме времени, может существенно сказаться на результате);

- нехватка времени на принятие решения (проявляется по мере усложнения
производства);

- проблема координации (решения необходимо координировать с другими
звеньями процесса или объекта);

- необходимость сохранения и распространения знаний очень опытных экспертов, полученных ими в процессе многолетней работы и большого практического
опыта.

Проблема извлечения знаний и их сохранения и распределе­ния — сегодня одна из главных проблем ор­ганизаций.

Таким образом, интеллектуализация информационных систем управления и трансформация их в интеллектуальные информационные системы управления знаниями, поддержки принятия решений является наиболее значимым и важным для экономики и бизнеса направлением.