Путем совершения работы;путем теплообмена

Первый из этих способов связан с макроскопическими перемещениями частей системы, а второй - с совокупностью микропроцессов, связанных с обменом энергии между отдельными частицами ТС и внешней средой. Теплообмен, в свою очередь, может происходить путем конвекции, теплопроводности или излучения. Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца[1]. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

21) Рассмотрим газ, находящийся в цилиндре с поршнем, позволяющем менять объем газа (рис 9.2). Отметим, что слово «газ» здесь совершенно условно. Это может быть жидкость, кристалл и вообще любое тело. Цилиндр контактирует с нагревателем или холодильником, который может сообщать газу тепло или отбирать его.

Пусть на поршень оказывается внешнее давление, величина которого может быть любой. Все процессы, которые будем рассматривать ниже, будут квазистатическими, т.е. медленными настолько, чтобы можно было считать, что в каждый момент газ находится в состоянии т.д.р. Если очень быстро сжать газ, то давление его у поршня окажется на какой-то момент больше, чем в стальном объеме, и тогда нельзя будет говорить о давлении газа вообще. Такой процесс не является квазистатическим. Приближенно квазистатическими являются и процессы, достаточно быстрые с технической точки зрения, например процессы, происходящих в цилиндрах двигателя автомашины во время работы мотора (оказывается, для приближенной квазистатичности требуется, чтобы скорость поршня была мала по сравнению со скоростью звука в газе).

Работа над газом выполняется внешними силами при его сжатии. Работа самого газа выполняется при его расширении. Пусть газ расширяется так, что поршень на рис.9.2 поднимается на величину dx. Тогда газ выполнит работу (S – площадь поршня). Получим Эта величина называется элементарной работой газа. Работа при расширении газа от объема V1 до V2 будет равна Если по одной оси отложить объем газа, по другой – его давление (плоскость P – V), то работа (9.9) будет изображаться площадью под кривой P(V) (рис.9.3).

Процесс расширения от объема V1 до объема V2 может происходить различным образом: например, можно при этом изолировать газ от нагревателя или, наоборот, нагревать газ и т.д. Иначе говоря, при перемещении из точки 1 в точку 2 в газе могут происходить различные процессы, даже если зафиксировано начальное и конечное состояния. В каждом процессе работа будет иметь свое значение, так как площадь под кривой процесса будет различной (кривые I, II, и III на рис.9.3). Таким образом, выполняемая газом работа зависит от процесса, который с ним происходит. Обычно (хотя это и не совсем точное выражение) говорят, что «работа газа есть функция процесса». Заметим, что работа положительна, если она выполняется газом, и отрицательна, если внешние силы выполняют ее над газом.

Предположим, что мы имеем 1 г газа. Сколько надо сообщить ему теплоты для того, чтобы температура его увеличилась на 1°С, другими словами, какова удельная теплоемкость газа? На этот вопрос, как показывает опыт, нельзя дать однозначного ответа. Ответ зависит от того, в каких условиях происходит нагревание газа. Если объем его не меняется, то для нагревания газа нужно определенное количество теплоты; при этом увеличивается также давление газа. Если же нагревание ведется так, что давление его остается неизменным, то потребуется иное, большее количество теплоты, чем в первом случае; при этом увеличится объем газа. Наконец, возможны и иные случаи, когда при нагревании меняются и объем, и давление; при этом потребуется количество теплоты, зависящее от того в какой мере происходят эти изменения. Согласно сказанному газ может иметь самые разнообразные удельные теплоемкости, зависящие от условий нагревания. Выделяют обычно две из всех этих удельных теплоемкостей: удельную теплоемкость при постоянном объеме (Сv) и удельную теплоемкость при постоянном давлении (Cp).

Для определения Сv надо нагревать газ, помещенный в замкнутый сосуд. Расширением самого сосуда при нагревании можно пренебречь. При определении Cp нужно нагревать газ, помещенный в цилиндр, закрытый поршнем, нагрузка на который остается неизменной.

Теплоемкость при постоянном давлении Cp больше, чем теплоемкость при постоянном объеме Cv. Действительно, при нагревании 1 г газа на 1° при постоянном объеме подводимая теплота идет только на увеличение внутренней энергии газа. Для нагревания же на 1° той же массы газа при постоянном давлении нужно сообщить ему тепло, за счет которого не только увеличится внутренняя энергия газа, но и будет совершена работа, связанная с расширением газа. Для получения Сp к величине Сv надо прибавить еще количество теплоты, эквивалентное работе, совершаемой при расширении газа.

22)

23) Цикл Карно́ —идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Цикл Карно состоит из четырёх стадий:

· Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.

· Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

· Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.

· Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику Отсюда коэффициент полезного действия тепловой машины Карно равен Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины, будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.

24) Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0.Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют несколько эквивалентных формулировок второго начала термодинамики:

· Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса).

· Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло Q1 у нагревателя, отдав Q2 холодильнику и совершив при этом работу A = Q1 − Q2. После этого воспользуемся процессом Клаузиуса и вернем тепло Q2 от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.

Таким образом, постулаты Клаузиуса и Томсона эквивалентны.

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

«Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии).

 

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

Второе начало термодинамики в аксиоматической формулировке Рудольфа Юлиуса Клаузиуса (R. J. Clausius, 1865) имеет следующий вид[2]:Для любой квазиравновесной термодинамической системы существует однозначная функция термодинамического состояния S = S(T,x,N), называемая энтропией, такая, что ее полный дифференциал dS = δQ / T.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

25) Энтропия-в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно. где dS — приращение энтропии; δQ — минимальная теплота, подведенная к системе; T — абсолютная температура процесса; Термодинамическая энтропия — термодинамическая функция, характеризующая меры неупорядоченности системы, то есть неоднородности расположения движения её частиц термодинамической системы.

Термодинамическая вероятность W состояния системы — это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние. Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом: где k — постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана (57.8) позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия — наиболее вероятного состояния системы — число микросостояний максимально, при этом максимальна и энтропия.

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

26) Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9×109 H.

Фарадей устанавливает важный факт, что для выделения любого вещества в количестве, равном его электрохимическому эквиваленту, требуется одно и то же количество электричества. Эта величина играет важную роль в современной физике, являясь одной из основных физических констант, и называется «число фарадея». Фарадей связывает этот факт с основными представлениями химии. Он пишет: «Согласно этой теории эквивалентные веса тел представляют собой такие количества их, которые содержат равные количества электричества... Иначе если принять атомную теорию и соответствующие ей выражения, то атомы тел, эквивалентные друг другу в отношении их обычного химического действия, содержат равные количества электричества, естественно связанного с ними». Таким образом фарадей приходит к представлению о некотором элементарном заряде, связанном с атомами вещества. Он указывает, что «атомы материи каким-то образом одарены электрическими силами или связаны с ними и им они обязаны своими наиболее замечательными качествами, и в том числе своим химическим сродст вом друг к другу». Все это позволяет высказать утверждение, что фарадей является основателем электронной теории вещества, впервые высказавшим мысль о дискретности электричества, об элементарном электрическом заряде.

Элемента́рный электри́ческий заря́д— минимальная порция (квант) электрического заряда в системе СИ (и 4,803×10−10 ед. СГСЭ в системе СГС).

Закон сохранения электрического заряда - физический закон, в соответствии с которым в замкнутой системе взаимодействующих тел алгебраическая сумма электрических зарядов (полный электрический заряд) остается неизменной при всех взаимодействиях.

27) Зако́н Куло́на — это закон о взаимодействии точечных электрических зарядов.Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона: