Оценка значимости параметров уравнения парной линейной регрессии

Парная регрессия представляет собой регрессию между двумя переменными

—у и х, т.е. модель вида + Е

, где у — результативный признак,т.е зависимая переменная; х - признак-фактор.

Линейная регрессия сводится к нахождению уравнения вида или

Уравнение вида позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х.

Построение линейной регрессии сводится к оценке ее пара­метров а и в.

Оценки параметров линейной регрессии могут быть найдены разными методами.

1.

2.

Параметр b называется коэффициентом регрессии. Его вели­чина показывает

среднее изменение результата с изменением фактора на одну единицу.

Формально а — значение у при х = 0. Если признак-фактор

не имеет и не может иметь нулевого значения, то вышеуказанная

трактовка свободного члена, а не имеет смысла. Параметр, а может

не иметь экономического содержания. Попытки экономически

интерпретировать параметр, а могут привести к абсурду, особенно при а < 0.

Интерпретировать можно лишь знак при параметре а. Если а > 0,

то относительное изменение результата происходит медленнее, чем изменение

фактора.

проверка качества найденных параметров и всей модели в целом:

-Оценка значимости коэффициента регрессии (b) и коэффициента корреляции

-Оценка значимости всего уравнения регрессии. Коэффициент детерминации

Уравнение регрессии всегда дополняется показателем тесноты связи. При

использовании линейной регрессии в качестве такого показателя выступает

линейный коэффициент корреляции rxy. Существуют разные

модификации формулы линейного коэф­фициента корреляции.

Линейный коэффициент корреляции находится и границах: -1≤.rxy

≤ 1. При этом чем ближе r к 0 тем слабее корреляция и наоборот чем

ближе r к 1 или -1, тем сильнее корреляция, т.е. зависимость х и у близка к

линейной. Если r в точности =1или -1 все точки лежат на одной прямой.

Если коэф. регрессии b>0 то 0 ≤.rxy ≤ 1 и

наоборот при b<0 -1≤.rxy ≤0. Коэф.

корреляции отражает степени линейной зависимости м/у величинами при наличии

ярко выраженной зависимости др. вида.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного

коэффициента корреляции

, называемый коэффициентом детерминации. Коэффициент детермина­ции

характеризует долю дисперсии результативного признака y, объясняемую

регрессией. Соответствующая величина

характеризует долю дисперсии у, вызванную влиянием остальных не учтенных

в модели факторов.

МНК позволяет получить такие оценки параметров а и b, которых

сумма квадратов отклонений фактических значений ре­зультативного признака

(у) от расчетных (теоретических)

ми­нимальна:

Иными словами, из

всего множества линий линия регрессии на графике выбирается так, чтобы сумма

квадратов расстояний по вертикали между точками и этой линией была бы

минималь­ной.

Решается система нормальных уравнений

 

ОЦЕНКА СУЩЕСТВЕННОСТИ ПАРАМЕТРОВ ЛИНЕЙНОЙ РЕГРЕССИИ.

Оценка значимости уравнения регрессии в целом дается с по­мощью F-критерия

Фишера. При этом выдвигается нулевая ги­потеза, что коэффициент регрессии равен

нулю, т. е. b = 0, и следовательно, фактор х не оказывает

влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии.

Центральное место в нем занимает разложе­ние общей суммы квадратов отклонений

переменной у от средне го значения у на две части -

«объясненную» и «необъясненную»:

- общая сумма квадратов отклонений

- сумма квадратов

отклонения объясненная регрессией

- остаточная сумма квадратов отклонения.

 

 

Любая сумма квадратов отклонений связана с числом степе­ней свободы, т.

е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности nис числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло­нений из п возможных требуется для

образования данной суммы квадратов.

Дисперсия на одну степень свободы D.

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива, то факторная и остаточная дисперсии не

отличаются друг от друга. Для Н0 необходимо опровержение, чтобы

факторная дисперсия превышала остаточную в несколько раз. Английским

статистиком Снедекором раз­работаны таблицы критических значений F-отношений

при разных уровнях существенности нулевой гипотезы и различном числе степеней

свободы. Табличное значение F-критерия — это максимальная величина отношения

дисперсий, которая может иметь место при случайном их расхождении для данного

уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения

признается достоверным, если о больше табличного. В этом случае нулевая

гипотеза об отсутствии связи признаков отклоняется и делается вывод о

существенности этой связи: Fфакт > Fтабл Н0

отклоняется.

Если же величина окажется меньше табличной Fфакт ‹, Fтабл

, то вероятность нулевой гипотезы выше заданного уровня и она не может быть

отклонена без серьезного риска сделать неправильный вывод о наличии связи. В

этом случае уравнение регрессии считается статистически незначимым. Но

не отклоняется.