Вычисление пределов с использованием второго замечательного предела

 

Одна из форм записи второго замечательного предела

.

Второй замечательный предел раскрывает неопределенность вида .

 

Пример

Вычислить предел .

Решение

Предел основания , а показатель степени при , т.е. имеет место неопределенность вида . Выделим целую часть основания степени

и применим второй замечательный предел:

, учитывая, что .

 

Непрерывность функции

 

Пусть функция определена в некоторой окрестности точки .

Определение. Функция называется непрерывной в точке , если она имеет предел в точке и этот предел равен – значению функции в точке :

.

Таким образом, для того чтобы функция была непрерывна в точке , необходимо и достаточно выполнение трех условий:

1) функция должна быть определена в точке ;

2) должны существовать пределы функции при как слева, так и справа, т.е. и ;

3) эти пределы должны быть равны между собой и равны значению функции в точке , т.е. .

Если хотя бы одно из этих условий не выполнено, то говорят, что функция имеет разрыв в точке и точку называют точкой разрыва функции .

Точки разрыва следует искать среди точек, не входящих в область определения функции.

Классификация точек разрыва

 

Определение. Если в точке функция имеет пределы слева и справа и они равны между собой, а в точке

или функция не определена, то точка называется точкой устранимого разрыва функции .

В этом случае функцию можно доопределить в точке так, чтобы она стала непрерывной, т.е. положить

.

 

Определение. Если в точке функция имеет конечные пределы слева и справа, причем , то точка называется точкой разрывафункции 1-го рода.

При переходе через точку значение функции претерпевает скачок, измеряемый разностью .

 

Определение. Точка называется точкой разрыва 2-го рода, если в этой точке хотя бы один из пределов (справа или слева) не существует или равен .

 

Пример

В точках и для функции установить характер точек разрыва.

Решение

Область определения функции . Данная функция непрерывна во всех точках, кроме точек и , которые не входят в область определения функции.

Исследуем точку , находя ее односторонние пределы в этой точке:

если , то , тогда предел слева ,

если , то , тогда предел справа .

 

Так как односторонние пределы конечны, но не равны между собой, то в точке функция имеет разрыв 1-го рода (скачок функции).

Исследуем точку , находя ее односторонние пределы в этой точке:

если , то , тогда ,

если , то , тогда .

Так как односторонние пределы равны , то в точке функция имеет разрыв 2-го рода.

 

Правила дифференцирования

 

Определение. Производной функции в данной точке х называется предел отношения приращения функции к приращению аргумента, при , если он существует.

 

По определению

.

Таблица производных

   
,

 

Правила дифференцирования

 

1. Производная постоянной равна нулю: .

2.

Теорема. Если каждая из функций и дифференцируема в данной точке х, то сумма, разность, произведение и частное (частное при условии ) так же дифференцируемы в этой точке, причем имеют место формулы:

1) ,

2) ,

3) .

Следствие. Постоянный множитель можно выносить за знак производной:

.

 

Пример

Используя таблицу производных и правила дифференцирования, найти производную функции .

Решение