Фолиевая кислота – витамин В9, Вс

Основными источниками фолатов являются свежие овощи и зелень: салат, шпинат, капуста, морковь, помидоры, лук.

Фолаты всасываются в проксимальных отделах тонкого кишечника. Всасывание фолатов осуществляются с помощью специфического механизма активного транспорта, требует затраты энергии и обеспечивает поступление фолиевой кислоты в кровоток против концентрационного градиента.

Транспорт фолатов в плазме крови происходит с участием специфических белков, из которых основным является фолатсвязывающий белок из фракции трансферина.

Всосавшиеся фолаты поступают в печень, где накапливаются и превращаются в активные формы. Способность печени накапливать и использовать фолаты находится в зависимости от обеспеченности организма белками, аминокислотами и витаминами. Дефицит витамина В12 и метионина снижает содержание фолатов в печени. Недостаток биотина нарушает образование активной формы витамина – тетрагидрофолиевой кислоты.

Печень играет важную роль в обмене фолатов. При циррозах, жировой инфильтрации печени нарушается накопление и использование фолатов.

Фолиевая кислота образует в организме несколько коферментных форм. Первая стадия образования коферментных форм – это восстановление фолиевой кислоты в тетрагидрофолиевую кислоту при участии дегидрофолатредуктазы. Тетрагидрофолиевая кислота приносит одноуглеродные фрагменты: СН3 – метильная группа, СН2 – метиленовая группа, СН – метиновая, СНО – формильная.

Тетрагидрофолиевая кислота образует следующие коферментные формы:

1. Метилтетрагидрофолиевую кислоту ТГФК-СН3

2. Метилен ТГФК-СН2

3. Метинтетрагидрофолиевую кислоту ТГФК-СН

4. Гидроксиметилентетрагидрофолиевую кислоту ТГФК-СН2ОН

5. Формилтетрагидрофолиевую кислоту ТГФК-СНО

Источником одноуглеродных фрагментов, акцептируемых ТГФК в реакциях катаболизма, являются - углеродный атом глицина, углеродный атом серина, углеродный атом гистидина, а также муравьиная кислота, формальдегид.

Наиболее важной функцией коферментных форм фолиевой кислоты является их участие в биосинтезе пуриновых оснований и тимидинмонофосфата.

При синтезе пуриновых оснований производные ТГФК служат источником 2 и 8 углеродных атомов пуринового кольца.

Участие коферментных форм фолиевой кислоты в биосинтезе тимидинфосфата, а также пуриновых оснований, входящих в ДНК и РНК, определяют важную роль фолиевой кислоты в синтезе нуклеиновых кислот и процессе пролиферации.

Нарушения обмена фолиевой кислоты.

Нарушения обмена фолиевой кислоты могут быть вызваны следующими причинами:

1. Недостаточное поступление фолатов с пищей.

2. Нарушение всасывания фолатов в организме.

Недостаток фолатов приводит к возникновению анемии. Непосредственным биохимическим дефектом, вызывающим анемию, является торможение биосинтеза ДНК и пролиферации кроветворных клеток, т.к. нарушается синтез пуриновых оснований и тимидинфосфата. Фолатдефицитная мегалобластическая анемия характеризуется снижением количества эритроцитов, гемоглобина и появлением в периферической крови и костном мозге мегалобластов. Введение фолиевой кислоты вызывают быструю гематологическую ремиссию и восстанавливает нормальное кроветворение.

Известны врожденные дефекты, затрагивающие различные ферменты, участвующие в образовании и взаимопревращениях коферментных форм фолиевой кислоты.

Известен дефект фолатредуктазы, который приводит к развитию мегалобластической анемии, но эта анемия вызвана нарушением превращения в формил-ТГФК.

 

Витамин В12-кобаламин.

Группа витаминов В12 . содержит атом кобальта, соединенный с 4 восстановленными пиррольными кольцами.

Синтезируется исключительно микроорганизмами, от них попадает в животные ткани, печень почки. Частично синтезируется микрофлорой кишечника.

Витамин В12 (кобаламин) присутствует в организме в 3 формах: оксикобаламина (НО-В12), метилкобаламина (СН312) и 5-дезоксиаденозилкобаламина (ДАВ12). В составе витамина В12 содержится кобальт. Оксимелиткобаламин является основной транспортной и депонируемой формой В12. метилкобаламин и дезоксиаденозилкобаламин – коферментные формы витамина.

Для всасывания витамина В12 необходим внутренний фактор Кастла – гликопротеид, продуцируемый обкладочными клетками желудка. При резекции желудка нарушается всасывания витамина В12.

После всасывания, витамин В12 связывается со специфическим транспортным белком транскобаламином. Транскобаламин существует в формах I и II. Транскобаламин I транспортирует витамин от кишечника к печени и обеспечивает его депонирование. Транскобаламин II является основной транспортной формой в кровотоке.

Витамин В12 принимает участие в 2 ферментативных реакциях.

1. В виде метилкобаламина катализирует превращение гомоцистеина в метионин путем переноса метильного остатка от метил-ТГФК:

2. Коферментная форма витамина В12-дезоксиаденозилкобаламин необходима для функционирования метилмалонил-КоА-мутазы, которая обеспечивает изомеризацию метилмалонил-КоА в сукцинил-КоА:

С разветвленной цепью
Жирные кислоты  
  С нечетным числом атомов С

Холестерин

Изолейцин

Метионин

Треонин

 

 

Нарушения обмена витамина В12.

Основными проявлениями недостаточности витамина В12 являются нарушения процессов кроветворения, приводящие к мегалобластической анемии, лейкопении, а также неврологические симптомы дегенерации задних и боковых столбов спинного мозга.

Патология :

1. Механизм развития анемии (гипотеза) – При недостаточности В12 нарушается использование СН3-ТГФК для ресинтеза метионина и вся фолиевая кислота попадает в «ловушку» и ТГФК превращается в СН3-ТГФК и дальше нарушается образование других коферментных форм фолиевой кислоты, которые необходимы для синтеза пуриновых и пиримидиновых нуклеотидов. Это ведет к нарушению биосинтеза нуклеиновых кислот, пролиферации и созреванию кроветворных клеток.

2. Анемия Аддисона-Бирмера (пернициозная анемия) – обусловлена атрофией слизистой оболочки желудка. Атрофия слизистой оболочки, как правило, носит врожденный характер.

3. Врожденные метилпропионатацидемии.

Носит выраженный семейный характер, затрагивает братьев и сестер одного поколения при отсутствии выраженных симптомов заболевания у родителей.

Метилмалонатацидемия обусловлена нарушением образования дезоксиаденозилкобаламина. Это нарушение приводит к накоплению метилмалонил-КоА. Метилмалонил-КоА ингибирует пируваткарбоксилазу и это нарушает превращение пирувата в оксалоацетат и в результате тормозится глюконеогенез, развивается гипогликемия, усиливается катаболизм липидов и ацидоз.

Метилмалонил-КоА тормозит синтез жирных кислот и включается в синтез вместо малонил-КоА, что приводит к появлению жирных кислот с разветвленной углеродной цепью.

Пропионил-КоА включается в синтез жирных кислот и приводит к образованию жирных кислот с нечетным числом атомов углерода. Нарушается синтез липидов и фосфолипидов, происходит нарушение миелиновой оболочки нервной ткани (демиелинизация).

 

Аскорбиновая кислота (витамин С).

Всасывание аскорбиновой кислоты происходит особенно интенсивно в тонком кишечнике. Всасывание может нарушаться при кишечных дискензиях, энтеритах.

Аскорбиновая кислота, являясь донором водорода, участвует в окислительно-восстановительных реакциях и превращается при этом в дегидроаскорбиновую кислоту:

Аскорбиновая кислота участвует в следующих биохимических процессах:

1. Гидроксилирование триптофана в 5-гидрокситриптофан (синтез серотонина).

2. Превращение 3,4-дигидрофенилэтиламина в норадреналин

3. Гидроксилирование п-гидроксифенилпирувата в гомогентизиновую кислоту:

4. Гидроксилирование стероидов (циклопентанпергидрофенантрена) при биосинтезе гормонов коры надпочечников из холестерина.

5. Гидроксилирование остатков пролина и лизина при синтезе коллагена:

6. Витамин С принимает участие в работе системы метгемоглобин – гемоглобин.

Аскорбиновая кислота + метгемоглобин ДАК + гемоглобин

ДАК + глутатион АК + окисленный глутатион

Аскорбиновая кислота восстанавливает метгемоглобин в гемоглобин, сама окисляется в дегидроксиаскорбиновую кислоту. Дегидроксиаскарбиновая кислота восстанавливается под действием глутатиона. Метгемоглобин не накапливается в клетках.

7. Аскорбиновая кислота способствует восстановлению трехвалентного железа в 2-х валентное, которое легче всасывается в кишечнике.

Нарушения обмена витамина С.

Недостаточность аскорбиновой кислоты приводит к цинге. Характерна повышенная ломкость кровеносных капилляров, выявляемая пробой на щипок, болезненность десен, их отечность, разрыхленность, кровоточивость при чистке зубов. В тяжелых случаях изъязвления десен, появление серых налетов, расшатывание и выпадение зубов. Но по мере развития скорбута обнаруживается красновато-синеватые, бурые пятна на голенях, на поверхности бедер.

 

 

Витамин А.

Источником витамина А являются продукты животного происхождения: печень трески, морского окуня, сметана, яйца. В моркови, томатах, свекле содержатся каротиноиды, которые являются провитаминами А.

Название «витамин А» объединяет группу соединений: ретинол-спирт, ретинал-альдегид, ретиноевую кислоту. В тканях организма образуются сложные эфиры ретинола с пальмитиновой и уксусной кислотой: ретинилпальмитат, ретинилацетат.

Известны три провитамина А - , , и -каротины, которые отличаются по строению и биологической активности. Наиболее активен - каротин, который при расщеплении дает 2 молекулы ретиналя. и -каротины дают по 1 молекуле витамина А.

Для всасывания витамина А необходимы желчные кислоты. В слизистой кишечника ретинол образует эфиры с жирными кислотами и трансформируется в составе хиломикронов. В плазме ретинол связывается ретинолсвязывающим белком и доставляется в ткани. В печени эфиры ретинола депонируются. Часть ретинола в печени окисляется в ретиноевую кислоту, которая выводится с желчью в виде глюкуронидов.

Функции витамина А.

1. Регулирует рост и дифференцировку клеток развивающегося организма. Регулирует дифференцировку и деление быстро делящихся клеток (пролиферирующих) тканей – хряща и костной ткани, эпителия кожи и слизистых.

2. Участие в фотохимическом акте зрения.

3. В форме ретинолфосфата присоединяет глю, фруктозу и транспортирует в клеточную мембрану для синтеза гликопротеидов, т.е. участвует в построении клеточной мембраны (рецепция, контакт, иммунологическое взаимодействие) проницаемость клеточных и субклеточных мембран.

Наиболее изучено участие витамина А в зрительном акте. В этом процессе витамин А участвует в форме цис-ретиналя, который входит в состав светочувствительных пигментов сетчатки глаза. В сетчатке имеется 2 типа клеток – палочки и колбочки. Палочки реагируют на слабое освещение (сумерочное, ночное зрение), а колбочки – на хорошее освещение (дневное зрение) и обеспечивают цветовое зрение. Палочки содержат белок родопсин, а колбочки – йодопсин.

Кванты света поглощаются родопсином и вызывают изомеризацию цис-ретиналя в транс-ретиналь. После чего происходит диссоциация транс-ретиналя и опсина и пигмент обесцвечивается. Изомеризация ретиналя приводит к возникновению электрического импульса, распространяющегося по нервному волокну. В темноте происходит превращение транс-ретиналя в транс-ретинол, а затем в цис-ретинол, который вновь соединяется с белком опсином. Отсутствие регенерации родопсина приводит к слепоте в ночное время или в сумерках.

Нарушения обмена витамина А.

1. Ранним признаком недостаточности витамина А является нарушение темновой адаптации и ночная слепота.

2. Недостаточность витамина А приводит к возникновению фолликулярного гиперкератоза (избыточное ороговение кожи, вызванное задержкой смены эпителия).

3. Ксерофтальмия – сухость конъюктивы глаза.

4. Кератомаляция – размягчение роговицы.

Гипервитаминоз А – возникает довольно быстро.

Причины:

1. Употребление продуктов, богатых витамином А (печень полярных млекопитающих, рыбий жир)

2. Передозировка лечебных препаратов витамина А.

Токсическими дозами являются (острое отравление) 1-6 млн МЕ (но есть индивидуальная чувствительность и тогда меньшая доза может быть токсичной).

Хроническая интоксикация может быть вызвана длительным применением 20 тыс МЕ. Особенно чувствительны дети.

Общие явления: раздражимость, бессонница, головные боли, повышение t, изменения со стороны волос и кожи, боли в суставах, растройство походки, припухлость мягких тканей, увеличение печени, селезенки.

Врожденные нарушения обмена витамина А.

Врожденное нарушение превращения -каротинов в ретиналь.

Дефект фермента, превращающего в слизистой кишечника -каротин в витамин А.

 

 

Витамин D.

Витамин D – групповое обозначение нескольких веществ стероидной природы. Наиболее активны эргокальциферол (D2), ходекальциферол (D3) и дигидроэргокальциферол (D4). Образование витамина D3 происходит из холестерина в коже человека при действии ультрафиолетового облучения. Ни один из витаминов не применяется в таких количествах, особенно у детей до 1 года. Потребность ребенка в витамине D – 10 мкг – 400 МЕ в сутки.

Всасывание кальциферолов происходит с помощью желчных кислот. В составе хиломикронов кальциферолы поступают в кровь, а затем в печень. В печени эргокальциферол и холекальциферол гидроксилируются в 25 положении и образуются 25-гидроксихолекальциферол и 25-гидроксиэргокальциферол. После этого поступают в почки, где образуются 1,25-дигидроксикальциферолы.

Функции витамина D.

1. Транспорт ионов кальция и фосфата через эпителий слизистой тонкого кишечника при всасывании.

2. Мобилизация кальция из костной ткани.

3. Реабсорбция кальция и фосфора в почечных канальцах.

В результате действия витамина D повышается содержание ионов кальция и фосфатов в крови.

Витамин D рассматривается как прогормон, т.к. основная функция – обеспечение нормальной концентрации Са в крови (2,5 мМ, 10мг% - очень стабильный, жесткий показатель). Уменьшение содержания Са2+ вызывает судорожное состояние, повышение концентрации Са2+ может вызывать внекостную кальцификацию.

Механизм действия витамина D.

1. Обеспечение всасывания кальция из кишечника (всасывается в виде фосфатов).

2. Реабсорбция кальция в почках.

3. Мобилизация из депо (костная ткань).

Схема обмена витамина D

Функции 1,25-диокси витамина D:

1. Деминерализация костей

2. Усиление синтеза белков, связывающих кальций (кальцийсвязывающий белок). Реализует свое действие через генетический аппарат.

3. Усиливает реабсорбцию кальция в почках.

Функции 24,25-диокси витамин D

Усиливает синтез щелочной фосфотазы и Са2+-зависимой АТФ-азы.

Снижение [Са2+] – выброс паратгормона 1,25-диокси витамин D.

Повышение [Са2+] – понижение содержания паратгормона переключение на синтез 24,25-диокси витамин D, выброс тиреокальцитонина усиление снижения кальция в костях.

Нарушение обмена витамина D.

1. Гипервитаминоз по количеству и тяжести на I месте. Гипервитаминоз D возникает при избыточном приеме витамина. Наблюдается деминерализация костей и их переломы. Уровень кальция и фосфатов в крови повышается (они извлекаются из костей, всасываются из кишечника и реабсорбируются в почках). Развивается гиперкальцемия карциноз внутренних органов: аорты, сердца, печени, легких, почек тяжелейшие осложнения, часто смерть.

2. Нарушения обмена витамина D могут возникнуть при заболеваниях почек и печени, где происходит образование активных форм витамина D.

3. Рахит – вызывает недостаток витамина D в пище. При рахите заторможены всасывание ионов кальция и фосфатов, реабсорбция их в почках. Уровень кальция и фосфора в крови снижается, нарушается минерализация костей. Наблюдается размягчение костей, возникают деформации костей конечностей, черепа (замедление зарастания родничков, нарушение челюстно-лицевого скелета), грудной клетки, дряблые мышцы.

Профилактика.

 

Витамин D назначают не раньше, чем с 1-1,5 месяцев, физиологическая доза 400 МЕ.

Биохимически не обоснованы схемы профилактики, когда витамин D вводят в 1 раз в 1 или 2 недели (всю дозу 3-6-8 тыс. МЕ) и недопустима ударная профилактика рахита, когда вводится доза больше физиологической в 1000 раз.

Врожденные нарушения обмена витамина D.

1. Синдром Де-Тони-Дебре-Факкони.

Характерна триада: гиперфосфатемия, гиперглюкозурия, гипераминоацедемия. В основе генетически обусловленные нарушения транспорта в почечных канальцах. Развивается вторичный рахит (вследствие потери фосфата и ацидоза).

2. Семейный гипофосфатемический витамин D – резистентный рахит.

Гипофосфатемия и признаки рахита на 1-2 году жизни, не поддается лечению витамином D, низкий рост 150-160 см, костные деформации, псевдоатлет (приземистое телосложение).

Причина: снижение реабсорбции неорганического фосфата в почечных канальцах, понижение всасывания в тонком кишечнике. В основе генетические нарушения в третичной структуре белков в почечных канальцах.

Лечение: фосфаты и соли кальция.

3. Врожденный псевдодефицитный витамин D – зависимый рахит – по клинике сходен с рахитом, но отличается резистентностью к стандартным профилактическим и лечебным дозам витамина D.

Характеризуется гипокальциемией и гипераминоацидурией, нет фосфата.

В основе дефект фермента в почках, обеспечивающего образования 1,25-диокси витамин D2/D3.

Витамин К.

Витамин К является хиноном с боковой изопреноидной цепью. Есть два ряда нафтохинонов – филлохиноны и менохиноны. Разработаны синтетические препараты витамина К – менадион, викасол и синкавит.

Витамин К содержится в основном в растительной пище: шпинат, тыква, капуста, томаты, крапива. Частично синтезируется микрофлорой кишечника.

Всасывается витамин К в тонком кишечнике в присутсвии желчных кислот. Транспорт витамина К происходит с хиломикронами. В плазме крова витамин К связывается с альбумином.

Функции витамина К.

1. Витамин К участвует в образовании факторов свертывающей системы крови: II – протромбина, VII – проконвертина, IX – фактора Кристмаса и X – фактора Стюарта.

2. Витамин К в виде кофермента участвует в микросомальном - карбоксилировании глутаминовой кислоты (печень), входящей в состав белков, связывающего кальций.

Протромбин (содержит 10 остатков глу, в отличие от тромбина).

Чтобы протромбин мог активироваться и превратиться в тромбин, он должен связать ионы Са2+. При недостатке витамина К в организме синтезируются дефектные молекулы протромбина, не способные правильно связывать ионы Са2+.

В костях белок – остеокальцин связывает Са2+.

Витамин Е (токоферолы).

Витамин Е представляет группу соединений: , и -токоферолы. Наибольшее значение имеет -токоферол.

Термин «токоферол» происходит от греческого слова «tokos», что в переводе означает «рождение ребенка».

Источником токоферола служат растительные масла.

Для всасывания витамина Е необходимы желчные кислоты. Всасывание происходит путем простой диффузии, транспортируются в составе хиломикронов через лимфатические пути в органы и ткани. В клетках токоферол включается в состав мембран.

Функции витамина Е.

1. Природный антиоксидант – препятствует развитию цепных реакций пероксидного окисления ненасыщенных липидов в биологических мембранах.

2. Токоферол повышает биологическую активность витамина А, т.к. защищает боковую цепь от пероксидного окисления.

Нарушения обмена витамина Е.

Гиповитаминоз Е у человека практически не встречается. Недостаточность витамина Е у экспериментальных животных вызывает атрофию семенников и рассасывание плода, мышечную дистрофию.

При недостатке витамина Е усиливается перекисное расщепления ненасыщенных липидов клеточных мембран, что вызывает выход лизосомальных ферментов.

При Е-авитаминозе повышается склонность эритроцитов к перекисному гемолизу, что приводит к возникновению анемии.

 

Витамин Коферментная (или активная) форма Тип катализируемой реакции или функция
Биотин Биотин Перенос СО2
АК Не известна Кофактор реакций гидроксилирования
Вит А Ретиналь Зрительный процесс
Вит Е Не известна Защита мембранных липидов
Вит D 1,25-дигидрокси-холекальциферол Регуляция обмена Са2+
Вит К Не известна Кофактор реакций карбоксилирования.