ОСНОВНЫЕ ПРИНЦИПЫ ПОСТРОЕНИЯ САПР
Разработка САПР представляет собой крупную научно-техническую проблему, а ее внедрение требует значительных капиталовложений. Накопленный опыт позволяет выделить следующие основные принципы построения САПР.
1. САПР — человеко-машинная система. Все созданные и создаваемые системы проектирования с помощью ЭВМ являются автоматизированными, важную роль в них играет человек — инженер, разрабатывающий проект технического средства.
В настоящее время и по крайней мере в ближайшие годы создание систем автоматического проектирования не предвидится, и ничто не угрожает монополии человека при принятии узловых решении в процессе проектирования. Человек в САПР должен решать, во-первых, все задачи, которые не формализованы, во-вторых, задачи, решение которых человек осуществляет на основе своих эвристических способностей более эффективно, чем современная ЭВМ на основе своих вычислительных возможностей. Тесное взаимодействие человека и ЭВМ в процессе проектирования — один из принципов построения и эксплуатации САПР.
2. САПР — иерархическая система, реализующая комплексный подход к автоматизации всех уровней проектирования. Иерархия уровней проектирования отражается в структуре специального программного обеспечения САПР в виде иерархии подсистем.
Следует особо подчеркнуть целесообразность обеспечения комплексного характера САПР, так как автоматизация проектирования лишь на одном из уровней оказывается значительно менее эффективной, чем полная автоматизация всех уровней. Иерархическое построение относится не только к специальному программному обеспечению, но и к техническим средствам САПР, разделяемых на центральный вычислительный комплекс и автоматизированные рабочие места проектировщиков.
3. САПР — совокупность информационно-согласованных подсистем. Этот очень важный принцип должен относиться не только к связям между крупными подсистемами, но и к связям между более мелкими частями подсистем. Информационная согласованность означает, что все или большинство возможных последовательностей задач проектирования обслуживаются информационно согласованными программами. Две программы являются информационно согласованными, если все те данные, которые представляют собой объект переработки в обеих программах, входят в числовые массивы, не требующие изменений при переходе от одной программы к другой. Так, информационные связи могут проявляться в том, что результаты решения одной задачи будут исходными данными для другой задачи. Если для согласования программ требуется существенная переработка общего массива с участием человека, который добавляет недостающие параметры, вручную перекомпоновывает массив или изменяет числовые значения отдельных параметров, то программы информационно не согласованы. Ручная перекомпоновка массива ведет к существенным временным задержкам, росту числа ошибок и поэтому уменьшает спрос на услуги САПР. Информационная несогласованность превращает САПР в совокупность автономных программ, при этом из-за неучета в подсистемах многих факторов, оцениваемых в других подсистемах, снижается качество проектных решений.
4. САПР — открытая и развивающаяся система. Существует, по крайней мере, две веские причины, по которым САПР должна быть изменяющейся во времени системой. Во-первых, разработка столь сложного объекта, как САПР, занимает продолжительное время, и экономически выгодно вводить в эксплуатацию части системы по мере их готовности. Введенный в эксплуатацию базовый вариант системы в дальнейшем расширяется. Во-вторых, постоянный прогресс техники, проектируемых объектов, вычислительной техники и вычислительной математики приводит к появлению новых, более совершенных математических моделей и программ, которые должны заменять старые, менее удачные аналоги. Поэтому САПР должна быть открытой системой, т. е. обладать свойством удобства использования новых методов и средств.
5. САПР — специализированная система с максимальным использованием унифицированных модулей. Требования высокой эффективности и универсальности, как правило, противоречивы. Применительно к САПР это положение сохраняет свою силу. Высокой эффективности САПР, выражаемой прежде всего малыми временными и материальными затратами при решении проектных задач, добиваются за счет специализации систем. Очевидно, что при этом растет число различных САПР. Чтобы снизить расходы на разработку многих специализированных САПР, целесообразно строить их на основе максимального использования унифицированных составных частей. Необходимым условием унификации является поиск общих черт и положений в моделировании, анализе и синтезе разнородных технических объектов. Безусловно, может быть сформулирован и ряд других принципов, что подчеркивает многосторонность и сложность проблемы САПР.
Билет 7 вопрос 2
Система аксиом Цермело—Френкеля (ZF) является стандартной системой аксиом для теории множеств.
К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC).
Эта система аксиом записана на языке логики первого порядка, и содержит бесконечное количество аксиом. Существуют и другие, конечные системы. Например, система NBG (von Neumann — Bernays — Godel) наряду с множествами рассматривает так называемые классы объектов. NBG равносильна ZF в том смысле, что любая теорема о множествах (то есть не упоминающая о классах), доказуемая в одной системе, также доказуема и в другой.
Аксиомами ZFC называется следующая совокупность высказываний теории множеств:
§
§ Аксиома экстенсиональности (Аксиома объёмности)
§
§ Примечание
§ «Аксиому объёмности» можно сформулировать следующим образом: «Если каждый элемент первого множества принадлежит второму множеству, а каждый элемент второго множества принадлежит первому множеству, тогда первое множество идентично второму [множеству].»
§ Достаточное условие идентичности двух множеств имеет вид и выводится из аксиом предиката , а именно:
§ ,
§ , где — любое математически корректное суждение об , а — то же самое суждение, но об .
§ Соединение указанного достаточного условия [идентичности множеств] с аксиомой объёмности даёт следующий критерий равенства множеств:
§
§ - аксиома пустого множества
§ «Аксиому [существования] пустого множества» можно сформулировать следующим образом: «Существует [по меньшей мере одно] множество без единого элемента.»
§ Доказывается, что «аксиома пустого множества» равносильна высказыванию . Поэтому единственному множеству можно присвоить имя. Употребительны два имени: и . Используя указанные имена, «аксиому пустого множества» записывают так:
§ и
§
- аксиома бесконечности
Примечание
«Аксиому бесконечности» можно сформулировать следующим образом: «Существует [по меньшей мере одно] „бесконечное множество“, которое состоит из .»
Высказывание о существовании бесконечного множества отличается от (ложного в данной аксиоматике) высказывания о существовании «множества всех множеств» ( ).
§
§ «Аксиому [неупорядоченной] пары» можно сформулировать следующим образом: «Из любых двух множеств можно образовать „неупорядоченную пару“, то есть такое множество , каждый элемент которого идентичен данному множеству или данному множеству ».
§ Примеры
§
§
§ - аксиома множества подмножеств
§ Примечание
§ «Аксиому множества подмножеств» можно сформулировать следующим образом: «Из любого множества можно образовать „суперкучу“, то есть такое множество , каждый элемент которого является [собственным либо несобственным] подмножеством данного множества .»
§ Примеры
§ , так как
§
§ Доказывается, что «аксиома множества подмножеств» равносильна высказыванию . Поэтому единственному множеству можно присвоить имя , которое произносится: «множество всех подмножеств [множества] » или «булеан[множества] ». Используя указанное имя, «аксиому множества подмножеств» записывают так:
§ или
§
§ Аксиому объединения [множеств] можно сформулировать следующим образом: «Из любого семейства множеств можно образовать „кучу-малу“, то есть такое множество , каждый элемент которого принадлежит по меньшей мере одному множеству данного семейства ».
§ Примеры
§
§
§
§ Схему выделения [подмножеств] можно сформулировать следующим образом: «Из каждого множества можно выделить [по меньшей мере одно] подмножество , высказав суждение о каждом элементе данного множества .»
§ Примеры
§
§
§
§
Схему преобразования [множеств] можно сформулировать следующим образом: «Любое множество можно преобразовать в [то же самое или другое] множество , высказав любое истинное математически корректное функциональное суждение обо всех элементах данного множества .»
§
§ «Аксиому регулярности»можно сформулировать следующим образом: «В любом семействе множеств есть [по меньшей мере одно] множество , каждый элемент которого не принадлежит данному семейству .»
§ Примеры
§
§
§ «Аксиому выбора» можно сформулировать следующим образом: «Из любого семейства непустых попарно непересекающихся множеств можно выбрать „делегацию“, то есть такое множество , в котором есть по одному элементу от каждого множества данного семейства .»
§ Пример
§ Предположим, что семейство образовано из множества неотрицательных чётных чисел и множества неотрицательных нечётных чисел. В таком случае, выполнены все условия «аксиомы выбора», а именно:
§ ,
§ ,
Пояснение к аксиомам ZFC
Аксиомы ZFC включают в себя:
0) группу высказываний о равенстве множеств (1 аксиома),
1) группу высказываний о существовании множеств (2 аксиомы),
2) группу высказываний об образовании множеств из уже имеющихся множеств (3 аксиомы и 2 схемы), в которой можно выделить три подгруппы,
3) группу высказываний об упорядоченности образованных множеств (2 аксиомы).
Билет 8 вопрос 1
ИНФОРМАЦИОННАЯ ПОДДЕРЖКА ИЗДЕЛИЯ НА ВСЕХ ЭТАПАХ ЖИЗНЕННОГО ЦИКЛА (CALS «CONTINIOUS ACQUISITION AND LIFE-CYCLE SUPPORT»)
Автор: Гудков Д.
ИНФОРМАЦИОННАЯ ПОДДЕРЖКА ИЗДЕЛИЯ НА ВСЕХ ЭТАПАХ ЖИЗНЕННОГО ЦИКЛА (CALS "CONTINIOUS ACQUISITION AND LIFE-CYCLE SUPPORT")
Появившись в 1980-х годах, CALS-технологии изначально были востребованы только как инструмент информационной поддержки материально-технического обеспечения. В настоящее время термин CALS подразумевает информационную поддержку изделия на всех этапах жизненного цикла, начиная с маркетинговых исследований и заканчивая утилизацией.
Жизненный цикл изделия (ЖЦИ) - перечень этапов, через которые проходит изделие за весь период своего существования. Включает этапы маркетинговых исследований, концептуального проектирования дизайна изделия, конструкторской и технологической подготовки производства, изготовления, обслуживания, утилизации и т. п. В основном, применяется по отношению к сложной наукоемкой продукции высокотехнологичных предприятий в рамках CALS-технологий.
Реализация CALS технологий в практическом плане предполагает организацию единого информационного пространства (Интегрированной информационной среды), объединяющего автоматизированные системы, предназначенные как для эффективного решения задач инженерной деятельности, так и для планирования и управления производством и ресурсами предприятия.
В единый процесс вовлекается множество проектирующих и машиностроительных предприятий с удаленным доступом к информации, прямой передачей информации от компьютера к машиностроительному оборудованию и т.д.
Интегрированная информационная среда представляет собой совокупность распределенных баз данных, в которой действуют единые, стандартные правила хранения, обновления, поиска и передачи информации, через которую осуществляется безбумажное информационное взаимодействие между всеми участниками жизненного цикла изделия. При этом однажды созданная информация хранится в интегрированной информационной среде, не дублируется, не требует каких-либо перекодировок в процессе обмена, сохраняет актуальность и целостность.
Целостность данных поддерживается в процессе управления конфигурацией проекта, а также тем, что нельзя одновременно изменять один и тот же объект разным разработчикам, каждый из них должен работать со своей рабочей версией. Другими словами, необходимо обеспечение синхронизации изменения данных, разделяемых многими пользователями.
Для этого выполняется авторизация пользователей и разрабатываются средства ведения многих версий проекта. Во-первых, пользователи подразделяются на классы (администрация системы, руководство проектом и частями проекта, группы исполнителей-проектировщиков) и для каждого класса вводят определенные ограничения, связанные с доступом к разделяемым данным; во-вторых, доступ регламентируется по типам разделяемых данных. Данным могут присваиваться различные значения статуса, например, "правильно", "необходимо перевычисление", "утверждено в качестве окончательного решения" и т.п.
Управление данными в едином информационном пространстве на протяжении всех этапов жизненного цикла изделий возлагается на систему PLM (Product Lifecycle Management). Под PLM понимают процесс управления информацией об изделии на протяжении всего его жизненного цикла. Отметим, что понятие PLM-система трактуется двояко: либо как интегрированная совокупность автоматизированных систем CAE/CAD/CAM/PDM и ERP/CRM/SCM, либо как совокупность только средств информационной поддержки изделия и интегрирования автоматизированных систем предприятия, что практически совпадает с определением понятия CALS.
Характерная особенность PLM - возможность поддержки взаимодействия различных автоматизированных систем многих предприятий, т.е. технологии PLM являются основой, интегрирующей информационное пространство, в котором функционируют САПР, ERP, PDM, SCM, CRM и другие автоматизированные системы многих предприятий.
В широком смысле слова CALS - это методология создания единого информационного пространства промышленной продукции, обеспечивающего взаимодействие всех промышленных автоматизированных систем (АС). В этом смысле предметом CALS являются методы и средства как взаимодействия разных АС и их подсистем, так и сами АС с учетом всех видов их обеспечения. Практически синонимом CALS в этом смысле становится термин PLM (Product Lifecycle Management), широко используемый в последнее время ведущими производителями АС.
Рис. 1. Этапы жизненного цикла промышленной продукции и используемые автоматизированные системы
При реализации целей и задач CALS необходимо соблюдать следующие основные принципы:
- информационная поддержка всех этапов ЖЦИ;
- единство представления и интерпретации данных в процессах информационного обмена между АС и их подсистемами, что обусловливает разработку онтологий приложений и соответствующих языков представления данных;
- доступность информации для всех участников ЖЦИ в любое время и в любом месте, что обусловливает применение современных телекоммуникационных технологий;
- унификация и стандартизация средств взаимодействия АС и их подсистем;
- поддержка процедур совмещенного (параллельного) проектирования изделий.
Рассмотрим содержание основных этапов ЖЦИ для изделий.
Маркетинговые исследования
Цель маркетинговых исследований - анализ состояния рынка, прогноз спроса на планируемые изделия и развития их технических характеристик. На данном этапе жизненного цикла находит применение система CRM (Customer Requirement Management - Управление взаимоотношениями с заказчиками).
Система CRM - это система, на вход которой поступают данные, связанные с клиентами компании, а на выходе появляется информация, влияющая на поведение компании в целом или на поведение ее отдельных элементов (вплоть до конкретного работника компании). Другими словами, CRM-система - это, прежде всего, база данных с информацией о клиентах, и набор приложений, которые позволяют, во-первых, собирать информацию о клиенте, во-вторых, ее обрабатывать, в третьих, делать определенные выводы на базе этой информации, экспортировать ее в другие приложения или просто при необходимости предоставлять эту информацию в удобном виде. Собственно, эти моменты и являются ключевыми функциями CRM-систем. Результатами работы CRM-системы могут пользоваться не только сотрудники компании, но и непосредственно сам клиент.
Примером использования может быть разработка дизайна нового продукта, который подходит по стилю к уже выполненным для данного заказчика работам, доступ к просмотру которых можно легко получить с помощью CRM-системы.
Проектирование
Одним из наиболее важных этапов является этап проектирования. Автоматизация проектирования осуществляется САПР (Системами автоматизированного проектирования). В САПР машиностроительных отраслей промышленности принято выделять системы функционального (системы расчетов и инженерного анализа - системы CAE (Computer Aided Engineering)), конструкторского (системы CAD (Computer Aided Design)) и технологического проектирования (системы CAM (Computer Aided Manufacturing)).
На этом этапе формируется объемная геометрическая модель машиностроительного изделия или, так называемая, мастер - модель, которая будет играть определяющую роль на многих последующих этапах. На этом этапе выполняются различные виды инженерного анализа.
Для создания объемной модели изделия конструктор может воспользоваться методами трехмерного твердотельного, поверхностного моделирования или сочетанием этих методов.
На сегодняшний день все существующее программное обеспечение автоматизированного конструирования принято классифицировать по функциональной полноте. По этому признаку оно делится условно на три уровня. К нижнему уровню относятся программы, реализующие 2D модели в виде чертежей и эскизов. Например, CADMECH и CADMECH LT на базе AutoCAD и AutoCAD LT2000 (Интермех) T-Flex CAD LT (Топ Системы), КОМПАС 5 (Аскон) и др.
На среднем - располагаются программные комплексы, которые позволяют создать 3-х мерную геометрическую модель сравнительно несложного изделия, в основном, методом твердотельного моделирования. К числу этих программных комплексов можно отнести: AutoCAD 2000 и AMD (AutoDesk), Solid Works (Solid Works), Solid Edge (Unigraphics Solutions) и др. Программные системы сквозного проектирования и производства расположены на верхнем уровне. Среди них можно выделить: CATIA5 (Dassault Systemes), EUCLID3 (EADS Matra Datavision), UNIGRAPHICS (Unigraphics Solutions), Pro/ENGINEER и CADDS5 (PTC).
Большинство систем инженерного анализа (CAE) используют метод конечных элементов. Для проведения какого-либо вида анализа, обычно, в CAD системе, на основе точной геометрической модели создается расчетная (упрощенная) модель путем удаления тех конструктивных элементов, которые не оказывают существенного влияния на результаты анализа. Расчетная модель передается в пакет анализа при помощи стандартных интерфейсов. Отдельные пакеты анализа имеют внутренние средства построения геометрической модели, с помощью которых может быть решена задача моделирования простых форм.
Современные программные средства CAE позволяют решать широкий спектр задач анализа линейной и нелинейной статики и динамики, устойчивости, теплопередачи, акустики, аэроупругости, оптимизации конструкции и многие другие.
Ведущими CAE-системам в настоящее время являются ABAQUS, ANSYS, COSMOS/M, LS-DYNA, MSC.ADAMS, MSC.NASTRAN.
Подготовка производства
Назначение этого этапа сводится к решению следующих основных задач:
- разработка технологий изготовления изделия, электродов, пресс-форм и штампов на основе их геометрических моделей, полученных на этапе проектирования;
- подготовка программ для станков с ЧПУ по спроектированным технологиям;
- контроль качества работы управляющих программ для станков с ЧПУ;
В производстве машиностроительных и части приборостроительных изделий используются технологии, в основе которых лежат различные физические процессы: механообработка, электроэрозионная обработка, литье металлов и пластмасс и др.
При выполнении различных видов механообработки используется общая база данных для поддержки связи между геометрической моделью обрабатываемой детали и управляющей программой для станка с ЧПУ, где проходы инструмента создаются по геометрии модели. Изменение геометрии отражаются в управляющей программе. Траектория движения инструмента создается интерактивно по поверхности модели изделия, обеспечивая технологов возможностью визуально наблюдать на мониторе имитацию процесса удаления стружки, контролировать зарезы и быстро вносить изменения в циклы обработки.
Подготовка программ для всех видов оборудования с ЧПУ выполняется автоматически, когда выбран станок и указан тип процессора, установленный на данный станок (например, CNC). Основными CAM-системами являются EdgeCAM, PowerMill, Mastercam.
При выборе и установке той или иной конфигурации ПО важно учитывать специфику моделей и задач, решаемых на каждом рабочем месте. В этом случае вместо одного пакета со множеством универсальных функций должны устанавливаться строго специализированные пакеты программ, разработанные в соответствии с этими задачами.
В совокупности и при условии организации обмена информацией между системами CAD/CAM/CAE получаем систему сквозного проектирования изделия (рис. 2.)
Рис. 2. Организация сквозного проектирования изделия на примере отливок деталей корпуса электроприбора
Другим важным аспектом является организация коллективной работы специалистов в составе рабочих групп в интерактивном режиме (дизайнеров, конструкторов, прочнистов, технологов и т.д.). На смену последовательному сквозному проектированию приходит параллельное проектирование и технологическая подготовка производства, так как благодаря такой организации труда достигается наивысшая производительность и существенно сокращается время разработки изделия. В этих условиях становятся актуальными вопросы организации обмена информацией.
Для решения проблем совместного функционирования компонентов САПР различного назначения, координации работы систем CAD/CAM/CAE, управления проектными данными и проектированием разрабатываются системы, получившие название систем управления проектными данными PDM (Product Data Management). Системы PDM либо входят в состав модулей конкретной САПР, либо имеют самостоятельное значение и могут работать совместно с разными САПР.
Производство
На большинстве этапов жизненного цикла, начиная с определения предприятий-поставщиков исходных материалов и компонентов и кончая реализацией продукции, требуются услуги системы управления цепочками поставок - Supply Chain Management (SCM). Цепь поставок обычно определяют как совокупность стадий увеличения добавленной стоимости продукции при ее движении от компаний-поставщиков к компаниям-потребителям. Управление цепью поставок подразумевает продвижение материального потока с минимальными издержками. При планировании производства система SCM управляет стратегией позиционирования продукции. Если время производственного цикла меньше времени ожидания заказчика на получение готовой продукции, то можно применять стратегию "изготовление на заказ". Иначе приходится использовать стратегию "изготовление на склад". При этом во время производственного цикла должно входить время на размещение и исполнение заказов на необходимые материалы и комплектующие на предприятиях-поставщиках.
В последнее время усилия многих компаний, производящих программно-аппаратные средства автоматизированных систем, направлены на создание систем электронного бизнеса (E-commerce). Задачи, решаемые системами E-commerce, сводятся не только к организации на сайтах Internet витрин товаров и услуг. Они объединяют в едином информационном пространстве запросы заказчиков и данные о возможностях множества организаций, специализирующихся на предоставлении различных услуг и выполнении тех или иных процедур и операций по проектированию, изготовлению, поставкам заказанных изделий. Проектирование непосредственно под заказ позволяет добиться наилучших параметров создаваемой продукции, а оптимальный выбор исполнителей и цепочек поставок ведет к минимизации времени и стоимости выполнения заказа. Координация работы многих предприятий-партнеров с использованием технологий Intrenet возлагается на системы E-commerce, называемые системами управления данными в интегрированном информационном пространстве CPC (Collaborative Product Commerce).
Организованная удаленная работа различных предприятий над одним продуктом образует виртуальное предприятие.
Управление в промышленности, как и в любых сложных системах, имеет иерархическую структуру. В общей структуре управления выделяют несколько иерархических уровней, показанных на рис. 3. Автоматизация управления на различных уровнях реализуется с помощью автоматизированных систем управления (АСУ).
Рис. 3. Общая структура управления
Информационная поддержка этапа производства продукции осуществляется автоматизированными системами управления предприятием (АСУП) и автоматизированными системами управления технологическими процессами (АСУТП).
К АСУП относятся системы планирования и управления предприятием ERP (Enterprise Resource Planning), планирования производства и требований к материалам MRP-2 (Manufacturing Requirement Planning) и системы SCM. Наиболее развитые системы ERP выполняют различные бизнес-функции, связанные с планированием производства, закупками, сбытом продукции, анализом перспектив маркетинга, управлением финансами, персоналом, складским хозяйством, учетом основных фондов и т.п. Системы MRP-2 ориентированы, главным образом, на бизнес-функции, непосредственно связанные с производством. В некоторых случаях системы SCM и MRP-2 входят как подсистемы в ERP, в последнее время их чаще рассматривают как самостоятельные системы.
Промежуточное положение между АСУП и АСУТП занимает производственная исполнительная система MES (Manufacturing Execution Systems), предназначенная для решения оперативных задач управления проектированием, производством и маркетингом.
В состав АСУТП входит система SCADA (Supervisory Control and Data Acquisition), выполняющая диспетчерские функции (сбор и обработка данных о состоянии оборудования и технологических процессов) и помогающая разрабатывать ПО для встроенного оборудования. Для непосредственного программного управления технологическим оборудованием используют системы CNC (Computer Numerical Control) на базе контроллеров (специализированных компьютеров, называемых промышленными), которые встроены в технологическое оборудование с числовым программным управлением (ЧПУ). Системы CNC называют также встроенными компьютерными системами.
Эксплуатация, обслуживание, утилизация
Понятие Единого Информационного Пространства (ЕИП) является ключевым понятием CALS-технологий. Потребитель является полноправным участником ЖЦИ на этапе эксплуатации изделия и ему необходимо обеспечить доступ в ЕИП. Однако использование для этих целей PDM-системы нецелесообразно в силу ее большой стоимости и значительного срока внедрения и освоения. Учитывая это, а также то, что потребителю необходимы только эксплуатационные данные об изделии, в качестве средства доступа к ЕИП он будет использовать не PDM-систему, а интерактивные электронные технические руководства (ИЭТР, IETM (Interactive Electronic Technical Manuals)).
Интерактивные электронные технические руководства также выполняют функции обучения обслуживающего персонала. С их помощью выполняются диагностические операции, поиск отказавших компонентов, заказ дополнительных запасных деталей и некоторые другие операции на этапе эксплуатации систем.
Конкретизация задач ИЭТР представлена следующим списком:
- обеспечение пользователя справочным материалом об устройстве и принципах работы изделия;
- обучение пользователя правилам эксплуатации, обслуживания и ремонта изделия;
- обеспечение пользователя справочными материалами, необходимыми для эксплуатации изделия, выполнения регламентных работ и ремонта изделия;
- обеспечение пользователя информацией о технологии выполнения операций с изделием, потребности в необходимых инструментах и материалах, о количестве и квалификации персонала;
- диагностика состояния оборудования и поиска неисправностей;
- подготовка и реализация автоматизированного заказа материалов и запасных частей;
- планирование и учет проведения регламентных работ;
- обмен данными между потребителем и поставщиком.
Типичный состав ИЭТР:
- описание устройства и функционирования изделия и его частей;
- правила эксплуатации изделия, включая ограничения, подготовку, собственно использование;
- диагностика оборудования и поиск неисправностей, ТОиР;
- регламент технического обслуживания, планирование и учет регламентных работ;
- каталоги запасных частей, ведомости ЗИПа;
- обмен информацией с заводом-поставщиком, автоматизированный заказ материалов и запасных частей;
- упаковка, транспортирование, консервация, хранение;
- утилизация.
Использование ИЭТР дает следующие преимущества по сравнению с традиционными бумажными техническими руководствами:
- сокращение на 20 - 25 процентов сроков освоения новых изделий потребителем.
- в интегрированном ИЭТР организовать обновление информации гораздо проще, чем в бумажных руководствах.
- в ИЭТР высокого уровня встраивается система диагностики неисправностей.
Примеры PDM
В настоящее время наиболее известными PDM-системами являются ENOVIA и SmarTeam (Dessault Systemes), Teamcenter (Unigraphics Solutions), Windchill (PTC), mySAP PLM (SAP), BaanPDM (BAAN) и российские системы Лоцман: PLM (Аскон), PDM StepSuite (НПО "Прикладная логистика"), Party Plus (Лоция Софт). Основные разработчики САПР в машиностроении считают целесообразным предлагать комплексные системы PLM, в состав которых входят как модули CAD/CAM/CAE, так и PDM.
Так, компания Dessault Systemes создает систему ENOVIA на базе приобретенной PDM ProductManager. ENOVIA предназначена для моделирования и управления данными об изделиях, процессах и ресурсах на различных этапах жизненного цикла промышленной продукции от концептуального проектирования до эксплуатационного обслуживания. Это распределенная на базе Web-технологий система управления данными, способствующая интеграции систем проектирования, производства и управления внутри предприятия и позволяющая отдельным фирмам объединяться в виртуальные предприятия. Управление проектами и изменениями данных, их распределение, интерфейс с системами ERP - далеко не полный перечень функций этой системы.
Кроме ENOVIA, Dessault Systemes развивают систему SmartTeam. В базовый комплект системы SmarTeam входят модуль создания и редактирования моделей, СУБД (Interbase или Oracle), визуализатор, модуль сопряжения с различными САПР (в список входят SolidWorks, MDT, Inventor, Microstation, Solid Edge, AutoCAD 14). Базовый комплект может расширяться путем добавления модулей документооборота, интеграции с ERP, SCM и CRM-системами, взаимодействия с партнерами через Internet и др. Состав системы SmarTeam и ее связи с CAD и ERP-системами иллюстрирует рис. 4.
Создаваемая в среде SmarTeam информационная модель объекта состоит из двух частей. Одна часть служит для описания состава изделия (в виде дерева), его структуры (в виде файлов с данными о сборках), геометрии и материала деталей. Другая часть содержит данные о технологических процессах изготовления объекта в виде дерева операций и переходов и автоматически формируемой технологической документации.
Рис. 4. Состав системы SmarTeam
Список сокращений
CALS (Continious Acquisition and Life-Cycle Support) - 1) Информационная поддержка изделия на всех этапах жизненного цикла, 2) Непрерывные поставки и поддержка жизненного цикла изделия.
PLM (Product Lifecycle Management) - управление жизненным циклом изделия.
CRM (Customer Relationships Management) - управление взаимоотношениями с заказчиками.
CAD (Computer Aided Design) - система автоматизированного проектирования.
CAM (Computer Aided Manufacturing) - система автоматизированного производства.
CAE (Computer Aided Engineering) - автоматизированное конструирование.
PDM (Product Data Management) - система управления проектными данными.
SCM (Supply Chain Management) - система управления цепочками поставок.
CPC (Collaborative Product Commerce) - система управления данными в интегрированном информационном пространстве.
ERP (Enterprise Resource Planning) - система планирования и управления ресурсами предприятия.
MRP (Manufacturing Requirement Planning) - система планирования производства и требований к материалам.
MES (Manufacturing Execution Systems) - производственная исполнительная система.
SCADA (Supervisory Control and Data Acquisition) - диспетчерское управление и сбор данных.
CNC (Computer Numerical Control) - компьютерное числовое программное управление.
IETM (Interactive Electronic Technical Manuals) - интерактивные электронные технические руководства.
ИПИ - Информационная Поддержка жизненного цикла Изделий.
ТОиР - техническое обслуживание и ремонт.
ЗИП - запчасти и принадлежности.
ЖЦИ - жизненный цикл изделия.
ЕИП - единое информационное пространство.
САПР - система автоматизированного проектирования.
БД - база данных.
Билет 8 вопрос 2