О НЕВЫЧИСЛИМОСТИ В МАТЕМАТИЧЕСКОМ МЫШЛЕНИИ 6 страница

 

Попробуем выяснить, может ли наш робот, приходя к тому или иному «неопровержимому» заключению, что-либо иметь в виду, и если да, то что именно. Уместно сопоставить эту ситуацию с той, что мы рассматривали в случае математика-человека. Тогда нас не занимало, что конкретно случилось обнаружить какому-либо реальному математику, нас занимало лишь то, что может быть принято за неопровержимую истину в принципе. Вспомним также знаменитую фразу Фейнмана: «Не слушайте, что я говорю; слушайте, что я имею в виду!». Похоже, нам нет необходимо­сти исследовать то, что робот говорит, исследовать нужно то, что он имеет в виду. Не совсем, впрочем, ясно (особенно если исследователь имеет несчастье являться приверженцем скорее точки зрения, нежели), как следует интерпретировать саму идею того, что робот способен что бы то ни было иметь в ви­ду. Если бы было возможно опираться не на то, что робот *-утверждает, а на то, что он в действительности «имеет в виду», либо на то, что он в принципе «должен иметь в виду», то то­гда проблему возможно неточности его-утверждений можно было бы обойти. Беда, однако, в том, что в нашем распоря­жении, по всей видимости, нет никаких средств, позволяющих снаружи получить доступ к информации о том, что робот «име­ет в виду» или о том, что, «как ему кажется, он имеет в ви­ду». До тех пор, пока речь идет о формальной системе, нам, судя по всему, придется полагаться лишь на доступные-утверждения, в достоверности которых мы не можем быть пол­ностью уверены.

 

Не здесь ли проходит возможная операционная граница между точками зренияи? Не исключено, что так оно и есть; хотя позицииэквивалентны в отношении принципиальной возможности внешних проявлений сознательной дея­тельности в поведении физической системы, люди, этих пози­ций придерживающиеся, могут разойтись в своих ожиданиях как раз в вопросе о том, какую именно вычислительную си­стему можно рассматривать как способную осуществить эф­фективное моделирование мозговой активности человека, нахо­дящегося в процессе осознания справедливости того или ино­го математического положения (см. конец). Как бы то ни было, возможные расхождения в такого рода ожиданиях не имеют к нашему исследованию сколько-нибудь существенного отношения.

 

3.18. Введение случайности: ансамбли всех возможных роботов

 

В отсутствие прямого операционного метода разрешения этих семантических проблем нам придется полагаться на кон­кретные-утверждения, которые наш робот будет делать, по­буждаемый механизмами, управляющими его поведением. Нам придется смириться с тем, что некоторые из этих утверждений могут оказаться ошибочными, однако такие ошибки исправимы и, во всяком случае, чрезвычайно редки. Разумно будет предпо­ложить, что всякий раз, когда робот допускает ошибку в одном из своих *-утверждений, ошибку эту можно приписать (по мень­шей мере, частично) каким-то случайным факторам, присутству­ющим в окружении или во внутренних процедурах робота. Если вообразить себе второго робота, функционирующего в соответ­ствии с механизмами того же типа, что управляют поведением первого робота, однако при участии иных случайных факторов, то этот второй робот вряд ли совершит те же ошибки, что и первый, — однако вполне может совершить другие. Упомянутые факторы могут привноситься теми самыми подлинно случайными элементами, которые определяются либо как часть информации, поступающей на вход робота из внешнего окружения, либо как компоненты внутренних процедур робота. Как вариант, они могут представлять собой псевдослучайные результаты неких детерми­нистских, но хаотических вычислений, как внешних, так и вну­тренних.

 

В рамках настоящего рассуждения я буду полагать, что ни один из подобных псевдослучайных элементов не играет в про­исходящем иной роли, чем та, которую могут выполнить (по меньшей мере, с тем же успехом) элементы подлинно случай­ные. Вполне естественная, на мой взгляд, позиция. Впрочем, не исключается и возможность обнаружения в поведении хаотиче­ских систем (отнюдь не сводящемся только лишь к моделиро­ванию случайности) чего-то такого, что может послужить при­ближением какой-либо интересующей нас разновидности невы­числительного поведения. Я не припомню, чтобы такая возмож­ность где-либо всерьез обсуждалась, хотя есть люди, которые твердо убеждены в том, что хаотическое поведение представ­ляет собой фундаментальный аспект деятельности мозга. Лично для меня подобные аргументы останутся неубедительными до тех пор, пока мне не продемонстрируют какое-нибудь существенно неслучайное (т. е. непсевдослучайное) поведение такой хаотиче­ской системы — поведение, которое может в сколько-нибудь сильном смысле являться приближением поведения подлинно невычислительного. Ни один намек на подобного рода демон­страцию моих ушей пока не достиг. Более того, как мы подчерк­нем несколько позднее , в любом случае маловероятно, что хаотическое поведение сможет проигнорировать те сложно­сти, которые представляет для вычислительной модели разума гёделевское доказательство.

 

Допустим пока, что любые псевдослучайные (или иным об­разом хаотические) элементы в поведении нашего робота или в его окружении можно заменить элементами подлинно случай­ными, причем без какой бы то ни было потери эффективности. Для выяснения роли подлинной случайности нам необходимо со­ставить ансамбль из всех возможных альтернативных вариан­тов. Поскольку мы предполагаем, что наш робот имеет цифровое управление, и, соответственно, его окружение также можно реа­лизовать в каком-либо цифровом виде (вспомним о «внутренних» и «внешних» участках ленты нашей описанной выше машины Тьюринга; см. также), то количество подобных возможных альтернатив непременно будет конечным. Это число может быть и очень большим, и все же полное описание всех упомянутых альтернатив представляет собой задачу чисто вычислительного характера. Таким образом, и сам полный ансамбль всех воз­можных роботов, каждый из которых действует в соответствии с заложенными нами механизмами, составляет всего-навсего вы­числительную систему — пусть даже такую, какую нам вряд ли удастся реализовать на практике, используя те компьютеры, ко­торыми мы располагаем в настоящее время или можем вообра­зить в обозримом будущем. Тем не менее, несмотря на малую вероятность практического осуществления совокупного модели­рования всех возможных роботов, функционирующих в соответ­ствии с набором механизмов, само вычисление «непознава­емым» считаться не может; иначе говоря, мы способны понять (теоретически), как построить такой компьютер — или машину Тьюринга, — который с подобным моделированием справится, пусть даже оно и не осуществимо практически. В этом состоит ключевой момент нашего рассуждения. Познаваемым механиз­мом или познаваемым вычислением является тот механизм или то вычисление, которое человек способен описать, совсем не обязательно действительно выполнять это вычисление ни самому человеку, ни даже компьютеру, который человек в состоянии в данных обстоятельствах построить. Ранее (в комментарии к ) мы уже высказывали весьма похожее соображение; и то, и другое вполне согласуются с терминологией, введенной в начале

 

3.19. Исключение ошибочных-утверждений

 

Вернемся к вопросу об ошибочных (но допускающих ис­правление)-утверждениях, которые может время от времени выдавать наш робот. Предположим, что робот такую ошибку все-таки совершил. Если мы можем допустить, что какой-либо другой робот, или тот же робот несколько позднее, или другой экземпляр того же робота такую же ошибку вряд ли совершит, то мы, в принципе, сможем установить факт ошибочности данно­го-утверждения, проанализировав действия ансамбля из всех возможных роботов. Представим себе, что моделирование пове­дения всей совокупности возможных роботов осуществляется в нашем случае таким образом, что различные этапы развития раз­личных экземпляров нашего робота мы рассматриваем как од­новременные. (Это делается лишь для удобства рассмотрения и никоим образом не подразумевает, что для такого моделирования непременно требуется параллельное выполнение действий. Как мы уже видели, принципиальных различий, помимо соображе­ний эффективности, между параллельным и последовательным выполнением вычислений нет; см.). Такой подход должен, в принципе, дать нам возможность уже на стадии рассмотре­ния результата моделирования выделить из общей массы кор­ректных-утверждений редкие (относительно) ошибочные *-утверждения, воспользовавшись тем обстоятельством, что оши­бочные утверждения «исправимы» и будут посему однознач­но идентифицироваться как ошибочные подавляющим большин­ством участвующих в модели экземпляров нашего робота, — по крайней мере, с накоплением с течением времени (модельного) различными экземплярами робота достаточного параллельного «опыта». Я вовсе не требую, чтобы подобная процедура была осуществима на практике; достаточно, чтобы она была вычис­лительной, а лежащие в основе всего этого вычисления прави­ла— в принципе «познаваемыми».

 

Для того чтобы приблизить нашу модель к виду, приличе­ствующему человеческому математическому сообществу, а также лишний раз удостовериться в отсутствии ошибок в-утвержде­ниях, рассмотрим ситуацию, в которой все окружение нашего робота разделяется на две части: сообщество других роботов и остальное, лишенное роботов (а также и людей), окружение; в дополнение к остальному окружению, в модель следует вве­сти некоторое количество учителей, по крайней мере, на ранних этапах развития роботов, и хотя бы для того, чтобы все роботы одинаково понимали строгий смысл присвоения тому или иному утверждению статуса. В моделируемый нами ансамбль войдут на правах различных экземпляров все возможные различные ва­рианты поведения всех роботов, а также все возможные (реле­вантные) варианты остального окружения и предоставляемых че­ловеком сведений, варьирующиеся в зависимости от конкретного выбора задействованных в модели случайных параметров. Как и ранее, правила, по которым будет функционировать наша модель (и которые я опять обозначу буквой), можно полагать в полной мере познаваемыми, невзирая на необычайную сложность всех сопутствующих расчетов, необходимых для ее практической ре­ализации.

 

Предположим, что мы берем на заметку все (в принци­пе)-высказывания,-утверждаемые (а также все высказы­вания с*-утвержденными отрицаниями) любым из всевозмож­ных экземпляров наших (вычислительно моделируемых) роботов. Объединим все подобные-утверждения в отдельную группу и назовем их безошибочными. Далее, мы можем потребовать, чтобы любое-утверждение относительно того или иного высказывания игнорировалось, если в течение некоторого про­межутка времени(в прошлом или в будущем) количество r различных экземпляров этого-утверждения в ансамбле из всех одновременно действующих роботов не удовлетворит неравен­ству, гдесуть некоторые достаточно большие числа, а— количество-утверждений, производимых в те­чение того же промежутка времени и занимающих относительно рассматриваемого.-высказывания противоположную позицию либо просто утверждающих, что рассуждения, на которые опи­рается исходное-утверждение, ошибочны. При желании мы можем настаивать на том, чтобы промежуток времени(это время не обязательно должно совпадать с «реальным» моделируемым временем и может измеряться в некоторых единицах вычислительной активности), равно как и числа, увеличивался по мере увеличения «сложности»-утверждаемого высказывания.

 

Понятию «сложности» применительно к-высказываниям можно придать точный характер на основании спецификаций ма­шины Тьюринга, как мы это уже делали в(в конце коммен­тария к возражению). Для большей конкретности мы можем воспользоваться явными формулировками, представленными в НРК (глава 2), как вкратце показано в приложении(а это уже здесь, с. 191). Итак, степенью сложности-высказывания, утверждающего незавершаемость вычисления машины

 

Тьюринга, мы будем полагать числознаков в двоичном пред­ставлении большего из пары чисел

 

Причина введения в данное рассуждение числа— вме­сто того чтобы удовлетвориться какой-нибудь огромной вели­чиной в лице одного лишь коэффициента , — заключается в необходимости учета следующей возможности. Предположим, что внутри нашего ансамбля, благодаря редчайшей случайно­сти, появляется «безумный» робот, который формулирует какое-нибудь абсолютно нелепое-утверждение, ничего не сообщая о нем остальным роботам, причем нелепость этого утверждения настолько велика, что ни одному из роботов никогда не придет в «голову» — просто на всякий случай — сформулировать его опровержение. В отсутствие числатакое-утверждение авто­матически попадет, в соответствии с нашими критериями, в груп­пу «безошибочных». Введение же достаточно большоготакую ситуацию предотвратит — при условии, разумеется, что подобное «безумие» возникает среди роботов не часто. (Вполне возможно, что я упустил из виду еще что-нибудь, и необходимо будет поза­ботиться о каких-то дополнительных мерах предосторожности. Представляется разумным, однако, по крайней мере, на данный момент, ограничиться критериями, предложенными выше.)

 

Учитывая, что все-утверждения, согласно исходному до­пущению, следует полагать «неопровержимыми» заявлениями нашего робота (основанными на, по всей видимости, присущих роботу четких логических принципах и посему не содержащими ничего такого, в чем робот испытывает хотя бы малейшее со­мнение), то вполне разумным представляется предположение, что вышеописанным образом действительно можно устранить редкие промахи в рассуждениях робота, причем функции ич. , вряд ли окажутся чем-то из ряда вон выходящим. Пред­положив, что все так и есть, мы опять получаем не что иное, как вычислительную систему — систему познаваемую (в том смысле, что познаваемыми являются лежащие в основе системы правила) при условии познаваемости исходного набора меха­низмовопределяющего поведение нашего робота. Эта вычис­лительная система дает нам новую формальную систему (также познаваемую), теоремами которой являются те самые безошибочные-утверждения (либо утверждения, выводимые из них посредством простых логических операций исчисления предикатов).

 

Вообще говоря, для нас с вами важно не столько то, что эти утверждения действительно безошибочны, сколько то, что в их безошибочности убеждены сами роботы (для привержен­цев точки зренияособо оговоримся, что концепцию роботовой «убежденности» следует понимать в чисто операцион­ном смысле моделирования роботом этой самой убежденности, см.).

 

Если точнее, то нам требуется, чтобы робот был готов по­верить в то, что упомянутые-утверждения действительно без­ошибочны, исходя из допущения, что именно набором механиз­мови определяется его поведение (гипотеза). До сих пор, в данном разделе, мы занимались исключительно устра­нением ошибок в-утверждениях робота. Однако, на самом де­ле, ввиду представленного в_ фундаментального противоре­чия, нас интересует устранение ошибок в его-утверждениях, т. е. в тех п -высказываниях, что по неопровержимой убежден­ности робота следуют из гипотезы. Поскольку принятие ро­ботами формальной системыв любом случае обусловлено гипотезой, мы вполне можем предложить им для обдумывания и более обширную формальную систему, определяемую аналогично формальной системеизПод в данном случае понимается формальная система, построенная из-утверждений, «безошибочность» которых установлена в соответствии с вышеописанными критериямиВ частно­сти, утверждение «утверждениеистинно» считается здесь безошибочным-утверждением. Те же рассуждения, что и в приводят нас к выводу, что роботы не смогут при­нять допущение, что они построены в соответствии с набором механизмов(вкупе с проверочными критериями), независимо от того, какие именно вычислительные правиламы им предложим.

 

Достаточно ли этих соображений для того, чтобы окон­чательно удостовериться в наличии противоречия? У читателя, возможно, осталось некое тревожное ощущение — кто знает, вдруг сквозь тщательно расставленные сети, невзирая на все наши старания, проскользнули какие-нибудь ошибочные или-утверждения? В конце концов, приведенные выше рас­суждения будут иметь смысл лишь в том случае, если нам удастся исключить абсолютно все ошибочные-утверждения (или-утверждения) в отношении-высказываний. Оконча­тельно и бесповоротно удостовериться в истинности утвер­ждениянам (и роботам) поможет обоснованность формальной системы ' (обусловленная гипотезой ). Эта самая обоснованность подразумевает, что система ни в коем случае не может содержать таких-утверждений, которые являются — или всего лишь предполагаются — ошибоч­ными. Невзирая на все предпринятые меры предосторожности, полной уверенности у нас (да и у роботов, полагаю) все-таки нет — хотя бы по той простой причине, что количество возмож­ных утверждений подобного рода бесконечно.

 

3.20. Возможность ограничиться конечным числом-утверждений

 

Есть, впрочем, возможность именно эту конкретную про­блему разрешить и сузить область рассмотрения до конечно­го множества различных-утверждений. Само доказатель­ство несколько громоздко, однако основная идея заключает­ся в том, что нам необходимо рассматривать только те высказывания, спецификации которых являются «краткими» в некотором вполне определенном смысле. Конкретная степень необходимой «краткости» зависит от того, насколько сложное описание системы механизмовнам необходимо. Чем сложнее описаниетем «длиннее» допускаемые к рассмотрению высказывания. «Максимальная длина» задается неким числом с, которое можно определить из степени сложности правил, опре­деляющих формальную системуСмысл в том, что при переходе к гёделевскому предположению для этой формальной системы — которую нам, вообще говоря, придется слегка моди­фицировать — мы получим утверждение, сложность которого бу­дет лишь немногим выше, нежели сложность такой модифициро­ванной системы. Таким образом, проявив должную осторожность при выборе числа с, мы можем добиться того, что и гёделевское предположение будет также «кратким». Это позволит нам полу­чить требуемое противоречие, не выходя за пределы конечного множества «кратких»-высказываний.

 

Подробнее о том, как это осуществить на практике, мы пого­ворим в оставшейся части настоящего раздела. Тем из читателей, кого такие подробности не занимают (уверен, таких наберется немало), я порекомендую просто-напросто пропустить весь этот материал.

 

Нам понадобится несколько модифицировать формальную системуприведя ее к виду— для краткости я буду обозначать ее просто как(отброшенные обозначения в данной ситуации несущественны и лишь добавляют путаницы и громоздкости). Формальная системаопределяется следу­ющим образом: при построении этой системы допускается при­нимать в качестве «безошибочных» только те-утверждения, степень сложности которых (задаваемая описанным выше чис­лом) меньше с, где с есть некоторое должным образом вы­бранное число, подробнее о котором я расскажу чуть ниже. Для «безошибочных»-утверждений, удовлетворяющих неравен­ству, я буду использовать обозначение «краткие утверждения». Как и прежде, множество действительных тео­рем формальной системыбудет включать в себя не толь­ко-утверждения, но также и утверждения, полу­чаемые из-утверждений посредством стандартных логических операций (позаимствованных, скажем, из исчисления предикатов). Хотя количество теорем системыбесконечно, все они выводятся с помощью обыкновенных логических опера­ций из конечного множества-утверждений. Да­лее, поскольку мы ограничиваем рассмотрение конечным множе­ством, мы вполне можем допустить, что функциипосто­янны (и принимают, скажем, наибольшие значения на конечном интервале). Таким образом, формальная системазадается лишь четырьмя постоянными с,и общей системой меха­низмовопределяющих поведение робота.

 

Отметим существенный для наших рассуждений момент: гёделевская процедура строго фиксирована и не нуждается в увеличении сложности выше некоторого определенного предела. Гёделевским предположениемдля формальной системы является-высказывание, степень сложности которого должна лишь на сравнительно малую величину превышать степень слож­ности самой системыпричем эту величину можно определить точно.

 

Конкретности ради я позволю себе некоторое нарушение си­стемы обозначений и буду вкладывать в записьнекий особый смысл, который может и не совпасть в точности с опреде­лением, данным вВ формальной системенас интересует лишь ее способность доказывать-высказывания. В силу этой своей способности системадает нам алгебраическую процеду­ру А, с помощью которой мы можем в точности установить (на основании завершения выполнения А) справедливость тех высказываний, формулировка которых допускается правилами системыА под-высказыванием понимается утверждение вида «действие машины Тьюрингане завершается» — здесь и далее мы будем пользоваться специальным способом маркировки машин Тьюринга, описанным в Приложении А (или в НРК, глава 2). Мы полагаем, что процедура А выполняется над парой чиселкак вТаким образом, собственно вы­числениезавершается в том и только в том случае, если в рамках формальной системывозможно установить справед­ливость того самого-высказывания, которое утверждает, что «действиене завершается». С помощью описанной в процедуры мы получили некое конкретное вычисление (обозна­ченное там как), а вместе с ним, при условии обоснован­ности системыи истинное-высказывание, которое систе­меоказывается «не по зубам». Именно это-высказывание я буду теперь обозначать черезОно существенно эквива­лентно (при условии достаточной обширности) действительно­му утверждению «системанепротиворечива», хотя в некоторых деталях эти два утверждения могут и не совпадать

 

Пустьесть степень сложности процедуры А (по опреде­лению, данному вв конце комментария к возражению) — иными словами, количество знаков в двоичном представлении числа а, гдеТогда, согласно построению, представлен­ному в явном виде в Приложении А, находим, что степень сложности ню утвержденияудовлетворяет неравенству Для нужд настоящего рассуждения мы мо­жем определить степень сложности формальной системыкак равную степени сложности процедурыт. е. числуПриняв такое определение, мы видим, что «излишек» сложности, связан­ный с переходом отоказывается еще меньше, чем и без того относительно крохотная величина

 

Далее нам предстоит показать, что еслипри достаточно большомтоОтсюда, соответственно, последует, что и-высказываниедолжно оказаться в пределах досягаемости системыпри условии, что роботы принимаютс-убежденностью. Доказав, что

 

мы докажем и то, чтобуквой мы обозначили значениеприЕдинственная возможная сложность здесь обусловлена тем обстоятельством, что сама величиназависит от с, хотя и не обязательно очень силь­но. Эта зависимостьот с имеет две различных причины. Во-первых, число с являет собой явный предел степени сложности тех-высказываний, которые в определении формальной си­стемыназываются «безошибочными-утверждениями», вторая же причина происходит из того факта, что система явным образом обусловлена выбором чисели мож­но предположить, что для принятия в качестве «безошибочно­го»-утверждения большей сложности необходимы какие-то более жесткие критерии.

 

Относительно первой причины зависимостиот с отметим, что описание действительной величины числа с необходимо за­давать в явном виде только однажды (после чего внутри системы достаточно обозначения с). Если при задании величины с исполь­зуется чисто двоичное представление, то (при больших с) такое описание дает всего-навсего логарифмическую зависимость от с (поскольку количество знаков в двоичном представлении натурального п равно приблизительно). Вообще говоря, учитывая, что число с интересует нас лишь в качестве возможного предела, точное значение которого находить вовсе не обязатель­но, мы можем поступить гораздо более остроумным образом. На­пример, числоспоказателями можно задать с помощью s символов или около того, и вовсе нетрудно подыскать примеры, в которых величина задаваемого числа возрастает с ростомеще быстрее. Сгодится любая вычислимая функция от s. Иными сло­вами, для того чтобы задать предел с (при достаточно большом значении с), необходимо всего лишь несколько символов.

 

Что касается второй причины, т. е. зависимости от с чи­селто, в силу вышеизложенных соображений, пред­ставляется очевидным, что для задания величин этих чисел (в осо­бенности, их возможных предельных значений) совершенно не требуется, чтобы количество знаков в их двоичном представлении возрастало так же быстро, как с, более чем достаточно будет и, скажем, обыкновенной логарифмической зависимости от с. Сле­довательно, мы с легкостью можем допустить, что зависимость величиныот с является не более чем гру­бо логарифмической, а также устроить так, чтобы само число с всегда было больше этой величины.

 

Согласимся с таким выбором с и будем в дальнейшем вме­стозаписывать. Итак,есть формальная система, теоремами которой являются все математические высказывания, какие можно вывести из конечного количества утверждений, используя стандартные логические правила (ис­числение предикатов). Количество этих -утверждений ко­нечно, поэтому разумным будет предположить, что для гарантии их действительной безошибочности вполне достаточно некото­рого набора постоянныхЕсли роботы верят в это с-убежденностью, то они, несомненно,-заключат, что гёделевское предположениетакже истинно на основании гипотезы, поскольку является П1-высказыванием меньшей, нежели с, сложности. Рассуждение для получения утвержде­нияиз-убежденности в обоснованности формальной системыдостаточно просто (в сущности, я его уже привел), так что с присвоением этому утверждению статусапроблем возникнуть не должно. То есть самотакже должно быть теоремой системы. Это, однако, противоречит убежденности роботов в обоснованности. Таким образом, упомянутая убе­жденность (при условии справедливости гипотезыи доста­точно больших числах) оказывается несовместимой с убежденностью в том, что поведением роботов действительно управляют механизмы— а значит, механизмыповедением роботов управлять не могут.

 

Как же роботы могут удостовериться в том, что были выбра­ны достаточно большие числа? Никак. Вместо этого они могут выбрать некоторый набор таких чисел и попробовать до­пустить, что те достаточно велики, — и прийти в результате к про­тиворечию с исходным предположением, согласно которому их поведение обусловлено набором механизмовДалее они воль­ны предположить, что достаточным окажется набор из несколько больших чисел, — снова прийти к противоречию и т.д. Вско­ре они сообразят, что к противоречию они приходят при любом выборе значений (вообще говоря, здесь нужно учесть, помимо прочего, небольшой технический момент, суть которого состоит в том, что при совершенно уже запредельных значениях значение с также должно будет несколько подрасти — однако это неважно). Таким образом, получая один и тот же результат вне зависимости от значений, роботы — равно как, по всей видимости, и мы — приходят к заключению, что в основе их математических мыслительных процессов не может лежать познаваемая вычислительная процедуракакой бы она ни была.

 

3.21. Окончателен ли приговор?

 

Отметим, что к такому же выводу мы придем и в случае принятия нами самых разных возможных мер предосторожности, причем вовсе необязательно подобных тем, что я предлагал выше. Наверняка в предложенную модель можно еще внести множество усовершенствований. Можно, например, предположить, что ро­боты в результате длительной работы впадают в «старческое сла­боумие», их сообщества вырождаются, а стандарты падают, т. е. увеличение числа Т выше определенного значения на деле уве­личивает и вероятность ошибки в-утверждениях. С другой стороны, если слишком большим сделатьто возникает риск исключить вообще все-утверждения из-за существу­ющего в сообществе меньшинства «глупых» роботов, разража­ющихся время от времени произвольными-утверждениями, которые в данном случае не перекроются необходимым коли­чеством-утверждений, формулируемых роботами здравомыс­лящими. Несомненно, не составит большого труда такой риск полностью исключить, введя еще несколько ограничивающих па­раметров или, скажем, сформировав группу элитных роботов, силами которых рядовые члены сообщества будут непрерывно тестироваться на предмет адекватности своих интеллектуальных способностей, и потребовав к тому же, чтобы статусприсваивался утверждениям только с одобрения всего сообщества робо­тов в целом.

 

Существует и много других возможностей улучшения каче­ства-утверждений или исключения ошибочных утверждений из общего (конечного) их числа. Кого-то, возможно, обеспоко­ит тот факт, что, несмотря на установление предела с сложно­сти-высказываний, ограничивающего общее количество кан­дидатов наилистатус до некоторой конечной величины, эта величина окажется все же чрезвычайно огромной (будучи экспоненциально зависимой от с), вследствие чего становит­ся весьма сложно однозначно удостовериться, что исключе­ны все возможные ошибочныеутверждения. В самом де­ле, никакого ограничения не задается в рамках нашей моде­ли на количество «робото-вычислений», необходимых для по­лучения удовлетворительного'-доказательства какого-либо из-высказываний. Следует ввести четкое правило: чем длин­нее в таком доказательстве цепь рассуждений, тем более жест­кие критерии применяются при решении вопроса о присвоении ему-статуса. В конце концов, математики-люди реагировали бы именно так. Прежде чем принять в качестве неопровержимого доказательства собрание многочисленных путаных аргументов, мы, естественно, чрезвычайно долго и придирчиво его изучаем. Аналогичные соображения, разумеется, применимы и к тому слу­чаю, когда предложенное доказательство на предмет его соответ­ствия-статусу исследуют роботы.