Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен . Тогда, при стремлении к справа, это отношение можно записать как , где — O(1). Запишем это условие:

.

Зафиксируем из отрезка и применим теорему Коши ко всем из отрезка :

, что можно привести к следующему виду:

.

Для , достаточно близких к , выражение имеет смысл; предел первого множителя правой части равен единице (так как и — константы, а и стремятся к бесконечности). Значит, этот множитель равен , где — бесконечно малая функция при стремлении к справа. Выпишем определение этого факта, используя то же значение , что и в определении для :

.

Получили, что отношение функций представимо в виде , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и был меньше , значит, предел отношения функций действительно равен .

Если же предел бесконечен (допустим, он равен плюс бесконечности), то

.

В определении будем брать ; первый множитель правой части будет больше 1/2 при , достаточно близких к , а тогда .

Для других баз доказательства аналогичны приведённым.

 

 

Примеры

·

·
Здесь можно применить правило Лопиталя 3 раза, а можно поступить иначе. Нужно разделить и числитель, и знаменатель на x в наибольшей степени(в нашем случае ). В этом примере получается:

· ;

· при .

 

Исследование функции и построение ее графика

При построении графика функции необходимо провести ее предварительное исследование. Примерная схема исследования функции с целью построения ее графика имеет следующую структуру:

1. Область определения и область допустимых значений функции.

2. Четность, нечетность функции.

3. Точки пересечения с осями.

4. Асимптоты функции.

5. Экстремумы и интервалы монотонности.

6. Точки перегиба и промежутки выпуклости, вогнутости.

7. Сводная таблица.

Задание. Исследовать функцию и построить ее график.

Решение. 1) Область определения функции.

2) Четность, нечетность.

Функция общего вида.

3) Точки пересечения с осями.

а) с осью :

то есть точки

б) с осью : в данной точке функция неопределенна.

4) Асимптоты.

а) вертикальные: прямые и - вертикальные асимптоты.

б) горизонтальные асимптоты:

то есть прямая - горизонтальная асимптота.

в) наклонные асимптоты :

Таким образом, наклонных асимптот нет.

5) Критические точки функции, интервалы возрастания, убывания.

Найдем точки, в которых первая производная равна нулю или не существует: для любого из области определения функции; не существует при и .

Таким образом, функция убывает на всей области существования. Точек экстремума нет.

6) Точки перегиба, интервалы выпуклости, вогнутости.

Найдем точки, в которых вторая производная равна нулю или не существует: ; при и вторая производная не существует.

Таким образом, на промежутках и функция вогнута, а на промежутках и - выпукла. Так как при переходе через точку вторая производная поменяла знак, то эта точка является точкой перегиба.

7) Эскиз графика.

17. Использование производной для исследования свойств функции и построения ее графика.

Связь между непрерывностью и дифференцируемостью функции. Если функция f ( x ) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.

П р и м е р . Функция y = | x | ( рис.3 ) всюду непрерывна, но она не имеет производной при x = 0 , так как в этой точке не существует касательной к графику этой функции. ( Подумайте, почему ? )

План исследования функции. Для построения графика функции нужно:

 

1) найти область определения и область значений функции,

2) установить, является ли функция чётной или нечётной,

3) определить, является ли функция периодической или нет,

4) найти нули функции и её значения при x = 0,

5) найти интервалы знакопостоянства,

6) найти интервалы монотонности,

7) найти точки экстремума и значения функции в этих точках,

8) проанализировать поведение функции вблизи “особых” точек

и при больших значениях модуля x .

 

18. Определение и свойства неопределённого интеграла.