![]() |
![]() |
|||
Категории: АстрономияБиология География Другие языки Интернет Информатика История Культура Литература Логика Математика Медицина Механика Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Транспорт Физика Философия Финансы Химия Экология Экономика Электроника |
Глава 1. Строение атома углерода. ГибридизацияВведение.
К настоящему времени известно чуть более 120 элементов, часть из них получены искусственным путем и в природе не встречаются. Общее число химических соединений этих элементов около 25 тысяч. Есть только один элемент в периодической системе Д.И. Менделеева, количество соединений которого исчисляется десятками миллионов – это углерод. Атомы углерода обладают практически уникальной способностью образовывать устойчивые связи между собой с образованием цепочек, циклов и каркасных структур практически любой протяженности*. На основе соединений углерода базируется и «особый вид существования белковых тел» - жизнь. Изначально, когда соединения углерода выделяли исключительно из продуктов животного или растительного происхождения - эти соединения стали называть органическими.
Естественно, даже малую часть фактического материала известного на данный момент «утрамбовать» в небольшой спецкурс невозможно. Однако есть общие закономерности в свойствах основных классов органических соединений и направлениях протекания органических реакций. Именно общим свойствам, присущим целым классам органических соединений, и основным механизмам протекания органических реакций посвящен курс «Теоретические основы органической химии».
*Таким свойством в очень ограниченной степени обладает сера, она образует стабильные циклические молекулы S8 черенковой серы и метастабильные полимерные цепочки Sn пластической серы. Атомы кремния также способны образовывать связи Si-Si, однако, соединения, содержащие подобные связи весьма не устойчивы и легко подвергаются гидролизу или окислению. В отличие от углерода, кремний и имеет высокое сродство к кислороду, и большинство поликремниевых соединений содержат связь Si-O-Si. **Фридрих Веллер в 1828 году осуществил первый в истории органический синтез. При нагревании цианата аммония он получил мочевину (карбамид) и в дальнейшем показал ее полную идентичность с природной. Глава 1. Строение атома углерода. Гибридизация.
Современное объяснение четырехвалентности углерода основано на модели гибридизации атомных орбиталей. Предлагается, что четыре валентных электрона атома углерода располагаются на четырех вырожденных гибридных орбиталях (т.н. sp3-орбиталях). Эти орбитали направлены к вершинам правильного тетраэдра. Угол между орбиталями 109,5, что соответствует максимальному удалению их друг от друга. В отличие от р-орбиталей, гибридные sp-орбитали не симметричны относительно узла и плотность вероятности нахождения электрона в большей доле значительно выше. Химическая связь при наличии данного типа гибридизации осуществляется за счет фронтального перекрывания sp3-орбитали (-связь). Такую гибридизацию имеют атомы углерода в наиболее твердой аллотропической модификации углерода – алмазе. sp3-Гибридизация объясняет тетраэдрическую конфигурацию атома углерода в насыщенных органических соединениях (содержащих одинарные, или «простые» связи С-С). Однако атомы углерода способны образовывать кратные связи (двойные и тройные) между собой и с атомами других элементов. Геометрия молекул содержащих кратные связи существенно отличается от тетраэдра. Углы при атоме углерода при двойной связи составляют 120, а при тройной 180. Для объяснения этого в концепции гибридизации постулируется возможность участия в образовании При образовании тройной связи две из трех связей образуются за счет бокового перекрывания взаимно перпендикулярных негибридизованных р-орбиталей (-связи), а одна – за счет фронтального перекрывания одной из противоположно направленных sp-гибридных орбиталей (-связь).
|