Взаимодействие ионизирующих излучений с веществом

Все виды, ионизирующих излучений могут быть сгруппированы в квантовые (фотонные) и корпускулярные. К квантовым относятся электромагнитные излучения — тормозное и гамма-излучение, к корпускулярным — излучения, состоящие из частиц: пучки электронов, альфа-частиц, протонов, нейтронов, отрицательных пи-мезонов.Действие излучения на организм человека начинается с физического процесса — взаимодействия излучения с веществом, т. е. с атомами и молекулами тканей. При этом взаимодействии энергия квантов и частиц расходуется на ионизацию и возбуждение атомов и молекул. В зависимости от типа излучения и величины энергии механизм взаимодействия различен.Протоны, альфа-частицы и электроны постепенно теряют свою энергию при столкновении с ядрами атомов и внешними электронами. Так как масса альфа-частиц и протонов значительна по сравнению с массой электронов атомов, с которыми они соударяются, то траектория альфа-частиц и протонов прямолинейна. Путь электрона в веществе извилист, поскольку он обладает малой массой и легко изменяет направление под действием электрических полей атомов. Поэтому всегда начальный пучок электронов в тканях имеет тенденцию к расхождению (рассеяние электронов).

ИОНИЗАЦИОННЫЕ ПОТЕРИ - потери энергии заряженной частицей при прохождении через вещество, связанные с возбуждением иионизацией его атомов. Удельные И. п. (- dE/dx), где E - кинетич. энергия частицы, называют тормозной способностью вещества. Они определяются как ср. энергия, потерянная частицей на единице длины пути. И. п. являются частью (для частиц тяжелее электрона преобладающей) общих электромагнитных потерь энергии, включающих также радиационные потери, Черенкова - Вавилова излучение ипереходное излучение .И. п. складываются из дискретных порций передач энергии атомам среды в отдельных столкновениях. В результате энергия частицы монотонно уменьшается, что приводит к её торможению, а при большой толщине вещества (или малой E)и к полной остановке. Различают полные, ограниченные и вероятные И. п. Полные И. п. отвечают любым передачам энергии в отдельных элементарных актах столкновений вплоть до максим, кинематически возможного предела Tмакс. Полные удельные И. п. заряженных частиц тяжелее электрона (в г/см2) даются ф-лой Бете-Блоха:

Здесь A=0,1536 МэВ г-1 см2, z - заряд частицы в ед. заряда электрона, b~v/c (v - скорость частицы), g=(1- b2)-1/2 - лоренц-фактор, Z и А- атомный номер( на примере)

Рис. 1. Полные удельные ионизационные потери энергии быстрых заряженных частиц тяжелее электрона в воздухе, Аl, Рb.Проникающая способность излученияВсе атомные и субатомные частицы, вылетающие из ядра атома при радиоактивном распаде: альфа, бета, n, p, гамма и т. д. - называют радиоактивными частицами, радиоактивным или ионизирующим излучением (ИИ), так как все они при прохождении через вещество:
- во-первых, приводят к его ионизации, к образованию горячих (высокоэнергетичных) и исключительно реакционно-способных частиц: ионов и свободных радикалов (осколков молекул, не имеющих заряда) и
- во-вторых, могут приводить к активации (активированию) вещества, к появлению так называемой наведённой активности, то есть к превращению стабильных атомов в радиоактивные - появлению радионуклидов активационного происхождения.Пробег альфа-частицзависит от начальной энергии и обычно колеблется в пределах от 3-х до 7 (редко до 13) см в воздухе, а в плотных средах составляет сотые доли мм (в стекле - 0,04 мм). альфа-излучение не пробивает лист бумаги и кожу человека. Из-за своей массы и заряда альфа-частицы обладают наибольшей ионизирующей способностью, они разрушают всё на своём пути. И поэтому альфа-активные радионуклиды являются наиболее опасными для человека и животных при попадании внутрь. Проникающая способность бета-частицИз-за малой массы (она в 1836 раз меньше массы протона) заряда (-1) и размеров бета-частицы слабее взаимодействуют с веществом, через которое им приходится лететь, но летят дальше. При этом путь бета-частицы в веществе не является прямолинейным. Поэтому говорят о их проникающей способности, которая также зависит от энергии. Проникающая способность бета-частиц, образовавшихся при радиоактивном распаде, в воздухе достигает 2?3 м, в воде и других жидкостях измеряется сантиметрами, в твёрдых телах - долями см. В ткани организма бета-излучение проникает на глубину 1?2 см. Хорошей защитой от бета-излучения является слой воды в несколько (до 10) см. Поток бета-частиц с весьма большой для естественного распада энергией в 10 Мэв практически полностью поглощается слоями: воздуха - 4 м; алюминия - 2,16 см; железа - 7,55 мм; свинца - 5,18 мм. Из за малых размеров, массы и заряда бета-частицы обладают гораздо меньшей ионизирующей способностью, чем альфа-частицы, но естественно, что при попадании внутрь бета-активные изотопы также гораздо опаснее, чем при внешнем облучении. Кратность ослабления n- и гамма-излученийНаиболее проникающими видами излучения являются нейтронное и гамма. Их пробег в воздухе может достигать десятков и сотен метров (также в зависимости от энергии), но при меньшей ионизирующей способности. У большинства изотопов энергия гамма-квантов не превышает 1?3 Мэв, хотя очень редко может достигать и больших величин - 6?7 Мэв. Поэтому в качестве защиты от n- и гамма-излучения применяют толстые слои из бетона, свинца, стали и т. п. и речь ведут уже о кратности ослабления.

 

Вопрос 65

Авторадиография (радиоавтография) — метод изучения распределения радиоактивных веществ в исследуемом объекте Пленка (фотоматериал) с чувствительной к радиоактивному излучению фотоэмульсией накладывается на поверхность или срез объекта.Для получения распределения тех или иных веществ в объекте используют маркирование нужных молекул изотопным индикатором. Радиоактивные вещества, содержащиеся в объекте, как бы сами себя фотографируют (отсюда название).После проявления места затемнения на пленке соответствуют локализации радиоактивных частиц. . Метод А. позволяет определить не только локализацию радиоизотопа в биологическом объекте, но и его количество, поскольку число восстановленных зёрен серебра эмульсии пропорционально количеству воздействующих на неё частиц.ПрименениеМетод используется в медицине, технике, а также в биологии, например, для изучения процессов фотосинтеза, где прослеживается след радиоактивного диоксида углерода, проходящего через различные химические стадии.Фотографическое изображение распределения радиоактивных веществ, полученное методом авторадиографии, называется авторадиограммой, или радиоавтографом.

Вопрос 66

Областью массового использования радионуклидов является ядерная медицина. На ее нужды расходуется более 50 % годового производства радионуклидов во всем миреРадионуклидная диагностика – один из видов лучевой диагностики, основанный на внешней радиометрии излучения, исходящего из органов и тканей после введения радиофармацевтических препаратов непосредственно в организм пациента. Это метод функциональной визуализации, позволяющий качественно и количественно оценить наличие функционирующей ткани в исследуемом органе. Особенности технологий ядерной медицины - распознавание патологического процесса на молекулярном уровне, в ряде случаев на доклинической стадии. Технологии радионуклидной диагностики являются функциональными и физиологичными (т.е. не влияющими на течение нормального или патологического процесса жизнедеятельности органа и системы, который они отражают). Радионуклидная диагностика основана на дистанционной радиометрии и использовании радиофармпрепаратов (РПФ), отличительная черта которых – способность накапливаться и распределяться в исследуемом органе в зависимости от наличия функционирующей ткани и отражать динамику протекающих в органе процессовОсновным методом лечения онкологических заболеваний является лучевой метод В качестве основного и радикального метода лучевая терапия применяется для лечения ранних стадий рака кожи, губы, языка, гортани, шейки матки. Неоперабельным больным лучевую терапию назначают в сочетании с лекарственным лечением. Используют различные источники облучения.Лучевое лечение осуществляется рентгеновскими лучами и гамма-лучами радиоактивных элементов. Достижения современной физики позволили значительно усовершенствовать метод лучевого лечения, оснастив лечебные учреждения аппаратами сверхвысокого напряжения, дающими жесткие лучи высокой проникающей активности (бетатрон, линейные ускорители). Искусственные радиоактивные элементы, заменив дорогостоящий радий, позволили широко внедрить этот наиболее эффективный вид лучевого лечения. Такие аппараты имеют мощный заряд радиоактивного изотопа кобальта. Радиоактивным цезием заряжены короткофокусные гамма-установки. Лечение радиоактивными изотопами производится не только воздействием заряда на расстоянии (дистанционного), но и путем непосредственного введения радиоактивного элемента в ткань опухоли или около нее в виде радиоактивных игл, зерен или жидких изотопо Описанная методика представляет собой классический случай динамического, так называемого функционального, исследования. Следующим этапом в развитии радионуклидной визуализации стало создание сканера. Было предложено измерять радиоактивность, перемещая датчик радиометра по прямой линии вдоль исследуемого органа, останавливаясь на определенное время счета через равные значения расстояния, при этом получался линейный срез. Далее датчик перемещался на одно значение расстояния перпендикулярно предыдущему передвижению и снова двигался параллельно первой прямой. Подобное движение повторялось последовательно до получения полного изображения проекции органа. Такая совокупность линейных срезов или сканов получила название сканограммы, а метод – сканирование. Создание новых приборов стимулировало создание новых радиофармпрепаратов. Появилась возможность для визуализации на сканере различных органов: щитовидной железы с 131I, печени c 197Au, почек c 169Yb, сердца c 201Tl, легких c 133Xe, поджелудочной железы с 75Se, и т.д. При отсутствии ультразвуковой диагностики и компьютерной томографии радионуклидное сканирование являлось единственным методом визуализации очагового поражения органов и тканей.

Вопрос 67

Ускорители заряженных частиц — устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом. Магнитное поле может лишь изменить направление движения заряженных частиц, не меняя величины их скорости, поэтому в ускорителях оно применяется для управления движением частиц (формой траектории). Обычно ускоряющее электрическое поле создаётся внешними устройствами (генераторами). Но возможно ускорение с помощью полей, создаваемых др. заряженными частицами; такой метод ускорения называется коллективным. Линейные ускорители: 1) Высоковольтный ускоритель (ускоритель прямого действия) 2) Линейный индукционный ускоритель3)Линейный резонансный ускоритель Циклические ускорители 1)БетатронЦиклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка.2) ЦиклотронВ циклотроне частицы инжектируются вблизи центра магнита с однородным полем с небольшой начальной скоростью.3) Микротрон ускоритель с переменной кратностью. 4) FFAGУскоритель с постоянным (как в циклотроне), но неоднородным полем, и переменной частотой ускоряющего поля.5) СинхротронЦиклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным полемПрименение Медицина (лечение онкологических заболеваний, радиодиагностика)

Вопрос 68

Дозиметрия ионизирующих излучений — раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. — совокупность методов измерения этих величин. Важнейший признак дозиметрических величин — их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений. Основной дозиметрической величиной является доза ионизирующего излучения и ее модификации. Задача Д. и. и. — описание дозного поля, сформированного в живом организме в реальных условиях облучения. Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза — это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр — это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.)

Вопрос 69Связь между мощностью физической дозы Р (в мкр/сек) и γ-активностью точесчного источника m, выраженной в миллиграмм-эквивалентах радия:

где: R - расстояние от источника, выраженное в сантиметрах. Если R дано в метрах, а m - в мг-эквивалентах радия. Связь между активностью, выраженной в милликюри М, и мощностью дозы Р:

Эквивалентная доза (биологическая доза)Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент — коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1963 года - биологический эквивалент рентгена, после 1963 года - биологический эквивалент рада - Энциклопедический словарь). 1 Зв = 100 бэр. Дозиметрические приборы дозиметры, устройства, предназначенные для измерения доз (См. Доза) ионизирующих излучений или величин, связанных с дозами. Д. п. могут служить для измерения доз одного вида излучения (γ-дозиметры, нейтронные дозиметры и т. д.) или смешанного излучения. Д. п. для измерения экспозиционных доз рентгеновского и γ-излучений обычно градуируют в Рентгенах и называются рентгенметрами. Д. п. для измерения эквивалентной дозы, характеризующей степень радиационной опасности, иногда градуируют в Бэрах и их часто называют бэрметрами. Радиометрами измеряют активности или концентрацию радиоактивных веществ. Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми радиоактивностями.

Защита расстоянием – достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами – наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью и излучением.

Вопрос 70

Биофизическое действие ионизирующих излученийизменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма-излучения или потоков заряженных частиц (альфа-частиц (См. Альфа-частицы), бета-излучения. Для Б. д. и. и. характерен ряд общих закономерностей. 1) Глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии. Так, энергия, поглощённая телом млекопитающего животного или человека при облучении смертельной дозой, при превращении в тепловую привела бы к нагреву тела всего на 0,001°С. Попытка объяснить «несоответствие» количества энергии результатам воздействия привела к созданию теории мишени (см. Мишени теория), согласно которой лучевое повреждение развивается при попадании энергии в особенно радиочувствительную часть клетки — «мишень». 2) Б. д. и. и. не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма. Именно эта особенность очень остро ставит перед человечеством вопросы изучения Б. д. и. и. и защиты организма от излучений. 3) Для Б. д. и. и. характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от нескольких мин до десятков лет в зависимости от дозы облучения, радиочувствительности организма и наблюдаемой функции .Так, при облучении в очень больших дозах (десятки тыс. рад) можно вызвать «смерть под лучом», длительное же облучение в малых дозах ведёт к изменению состояния нервной и других систем, к возникновению опухолей спустя годы после облучения. Первичное действие радиации любого вида на любой биологический объект начинается с поглощения энергии излучения, что сопровождается возбуждением молекул и их ионизацией. При взаимодействии высокоэнергетических фотонов или заряженных частиц с молекулой воды в качестве первичных продуктов образуются либо молекула H2O в возбужденном состоянии, либо катион-радикал H2O?+ и электрон , а далее за счет их спонтанного распада и рекомбинации возникают АФК , а также радикалы H, гидратированные электроны ?aq и ряд других продуктов. При этом каждая частица, тормозясь в воде и постепенно отдавая энергию, может производить большое число продуктов радиолиза Образующиеся молекулы АФК сосредоточены вдоль трека проходящей частицы, что увеличивает вероятность взаимодействия с частями биомакромолекулы- мишени, находящимися поблизости друг от друга. O2 и H2O2 достаточно слабо реагируют с различными группами ДНК, в то время как OH чрезвычайно реакционноспособен. С другой стороны, меньшая реакционноспособность O2 и H2O2 приводит к тому, что они способны диффундировать на большее расстояние, чем OH, который реагирует с молекулами-мишенями практически сразу после образовани

Вопрос 71

 

Основные представления квантовой механики.Волновая функция и её физический смысл.Уравнение Шредингера.Диалектическое единство корпускулярных и волновых свойств частиц. Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием повседневных объектов, квантовые эффекты в основном проявляются только в микроскопических масштабах. Волнова́я фу́нкция, или пси-функция — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

Где — координатный базисный вектор, а — волновая функция в координатном представлении.Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Уравнение Шредингера- Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. При проявлении у микрообъекта корпускулярных свойств его волновые свойства существуют как потенциальная возможность, способная при определенных условиях перейти в действительность (диалектическое единство корпускулярных и волновых свойств материи).

Вопрос 72

Излучение и поглощение энергии атомами и молекулами.Оптические атомные спектры.Молекулярные спектры.Применение спектрометрии в медицине и биологии. Атомные спектры, спектры оптические, получающиеся при испускании или поглощении света (электромагнитных волн) свободными или слабо связанными атомами; такими спектрами обладают, в частности, одноатомные газы и пары. А. с. являются линейчатыми — они состоят из отдельных спектральных линий. А. с. наблюдаются в виде ярких цветных линий при свечении газов или паров в электрической дуге или разряде (спектры испускания) и в виде тёмных линий (спектров поглощения). Каждая спектральная линия характеризуется определённой частотой колебаний v испускаемого или поглощаемого света и соответствует определённому квантовому переходу между уровнями энергии Ei и Ek атома согласно соотношению: hv = Ei - Ek, где h — Планка постоянная). Наряду с частотой спектральную линию можно характеризовать длиной волны l = c/v, волновым числом 1/l = v/c (c — скорость света) и энергией фотона hv. МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич. состояния в другое. M. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб. характерными получаются M. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением: такой спектр состоит из узких линий с доп-леровской шириной. Применения масс-спектрометрииРазработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика. Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков — бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надёжна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

Вопрос 73

опти́ческий ква́нтовый генера́тор — устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения. Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Основными свойствами лазерного излучения, обеспечивающими самое широкое применение лазеров в различных областях науки и техники, являются: монохроматичность, высокая когерентность, чрезвычайно малая расходимость луча и высокая плотность мощности (энергии) излучения. Все перечисленные свойств лазерного излучения важны в научной и исследовательской работе. Лазерная терапия может проводиться, как самостоятельный метод, так и в комплексе с медикаментозным лечением, в том числе гормональном и с методами физиотерапии. При этом необходимо иметь в виду, что в процессе лечения чувствительность организма к лекарственным средствам изменяется и появляется необходимость в уменьшении обычных дозировок иногда до 50%, а в ряде случаев и отказаться от них.С учетом патогенетического механизма действия лазерного излучения на организм разработаны показания к лазеротерапии.Внутренние болезни:Ишемическая болезнь сердца, гипертоническая болезнь, хронические неспецифические заболевания легких, язвенная болезнь желудка и двенадцатиперстной кишки, дискинезия желчных путей, колиты, хронический панкреатит, острый и хронический (безкаменные) холециститы, спаечная болезнь.Заболевания опорно-двигательного аппарата:Остеохонроз позвоночника с корешковым синдромом, воспалительные заболевания костей и суставов обменной этиологии в стадии обострения, артриты и артрозы, заболевания и травматические повреждения мышечно- связочного аппарата (миозиты, тендовагиниты, бурситы).Заболевания нервной системы:Невриты и невралгии периферических нервов, невралгия тройничного нерва, неврит лицевого нерва, сосудисто-мозговая недостаточность.Заболевания мочеполовой системы:Хронический сальпингоофорит, трубное бесплодие, хронический неспецифический простатит, уретрит, цистит, ослабление половой функции.Заболевания ЛОР - органов:Хроническое воспаление придаточных пазух носа, фаринголарингиты, тонзиллиты, отиты, субатрофический и вазомоторный риниты.Хирургические заболевания:Послеоперационные и длительно не заживающие раны, трофические язвы, келлоидные рубцы (в подострой стадии), травмы (механические, термические, химические), остеомиелиты, трещины заднего прохода, гнойные абсцессы, маститы, сосудистые заболевания нижних конечностей.Заболевания кожных покрововОбработка мягких тканей:
Гингивопластика
• Изменяет форму маргинальной десны для формирования красивой улыбкиФренэктомия• Быстро и легко удаляет уздечки языка, верхней и нижней губыУдаление фибром• Удаляет фибромы без наложения швов• Оставляет чистую поверхность с минимальным беспокойством для пациентаБиопсия• Чистая, стерильная процедура биопсииГемостаз• Бескровные хирургические операции на мягких тканях• Коагуляция тканейЛечение афтозных язв• Блокирует нервные окончания, что значительно снижает болевые ощущения пациента

Вопрос 74

Электронный парамагнитный резонанс (ЭПР), резонансное поглощение электромагнитной энергии в сантиметровом или миллиметровом диапазоне длин волн веществами, содержащими парамагнитные частицы. ЭПР — один из методов радиоспектроскопии. Парамагнитными частицами могут быть атомы и молекулы, как правило, с нечётным числом электронов (например, атомы азота и водорода, молекулы NO); радикалы свободные (например, CH3); ионы с частично заполненными внутренними электронными оболочками (например, ноны переходных элементов); центры окраски в кристаллах; примесные атомы (например, доноры в полупроводниках); электроны проводимости в металлах и полупроводниках. : во внешнем постоянном магнитном поле Н вектор магнитного момента m прецессирует вокруг направления магнитного поля Н с частотой v, определяемой соотношением 2pv = gН. Здесь g — гиромагнитное отношение.Метод ЭПР даёт уникальную информацию о парамагнитных центрах. Он однозначно различает примесные ионы, изоморфно входящие в решётку от микровключений. При этом получается полная информация о данном ионе в кристалле: валентность, координация, локальная симметрия, гибридизация электронов, сколько и в какие структурные положения электронов входит, ориентирование осей кристаллического поля в месте расположения этого иона, полная характеристика кристаллического поля и детальные сведения о химической связи. И, что очень важно, метод позволяет определить концентрацию парамагнитных центров в областях кристалла с разной структурой.Магнитное поле в таких ЭПР спектрометрах создается электромагнитом. Возможности метода существенно расширяются при переходе в более высокочастотные диапазоны СВЧ. Можно отметить следующие преимущества миллиметровой ЭПР спектроскопии:Основным преимуществом ЭПР спектроскопии миллиметрового диапазона является высокое спектральное разрешение по g-фактору, пропорциональное частоте регистрации ν или напряженности внешнего магнитного поля B0 (см. верхнюю иллюстрацию).При ν > 35 ГГц насыщение парамагнитных центров достигается при меньшем значении СВЧ поляризующего поля из-за экспоненциальной зависимости числа возбужденных спинов от частоты регистрации. Этот эффект успешно используется при исследовании релаксации и динамики парамагнитных центров.В высоких магнитных полях существенно уменьшается кросс-релаксация парамагнитных центров, что позволяет получать более полную и точную информацию об исследуемой системе.В миллиметровых диапазонах ЭПР увеличивается чувствительность метода к ориентации разупорядоченных систем в магнитном поле.

Вопрос 75

Биологические мембраны – тончайшие плёнки, состоящие из двойного слоя молекул липидов и встроенных в этот слой белков. Мембраны формируют структуру живой клетки. Клеточная или цитоплазматическая мембрана окружает каждую клетку. Основа любой мембраны – бимолекулярный слой липидов (липидный бислой. Мембранные липиды - это низкомолекулярные вещества, близкие по своим свойствам и жирам. Характерная особенность любой липидной молекулы состоит в том, что она построена из двух физически разных частей: из головки и двух длинных неполярных хвостов. (Хвосты представляют собой длинные цепи жирных кислот, которые могут быть как насыщенными, так и ненасыщенными. Головки липидов тоже могут иметь разное строение, но для липидов биомембран наиболее характерны производные сахаров и фосфорной кислоты - в соответствии с этим различают глико- и фосфо-липиды.) Головки липидов либо заряжены отрицательно, либо электрически нейтральны, но имеют неравный нулю дипольный момент (векторная физическая величина, характеризующая, наряду с суммарным зарядом, электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей.). Положительно заряженных головок нет и это играет очень важную роль в формировании всего электрического заряда мембраны и в ее функционировании. Поскольку головки липидов полярны, то они хорошо взаимодействуют с полярными растворителями, в частности с водой, поэтому головки называют гидрофильной частью липида. Хвосты, наоборот, не взаимодействуют с водой, - они гидрофобны, но они хорошо взаимодействуют с неполярными веществами и растворителями

Вопрос 76

Я́дерный магни́тный резона́нс (ЯМР) - это неинвазивный нерентгеновский метод исследования органов и тканей человека; резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином(моментом количества движения и обусловленным им постоянным магнитным моментом) во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер. Изучение спектров (-сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра )ЯМР позволяет сделать вывод о химической и пространственной структуре различных веществ без проведения химического анализа. В медицине: метод ЯМР обеспечивает высокую контрастность разных мягких тканей на изображении, что крайне важно для выявления больных клеток на фоне здоровых, ЯМР- изображения позволяют с высокой достоверностью обнаружить такие патологические процессы, как эдема, инфекции, злокачественные опухоли и перерождения ткани. Особенно высокую

чувствительность к мозговой эдеме дают сигналы спинового эха. Главный недостаток ЯМР-интроскопии в том , что на ЯМР-изображениях нет информации о структуре костей.

 

Вопрос 77

Магнитно-резонансная томография (МРТ) — современный безопасный (без ионизирующего излучения) неинвазивный диагностический метод, обеспечивающий визуализацию глубоко расположенных биологических тканей, широко применяемый в медицинской практике, в частности в неврологии и нейрохирургии.Магнитно-резонансная томография (МРТ), как следует из названия, основаа на явлении ядерного магнитного резонанса (ЯМР). Суть этого явления в общем случае сводится к следующему: ядра химических элементов в твердом, жидком или газообразном веществе можно представить как быстро вращающиеся вокруг своей оси магниты. Если эти ядра-магниты поместить во внешнее магнитное поле, то оси вращения начнут прецессировать (т. е. вращаться вокруг направления силовой линии внешнего магнитного поля), причем скорость прецессии зависит от величины напряженности магнитного поля. Если теперь исследуемый образец облучить радиоволной, то при равенстве частоты радиоволны и частоты прецессии наступит резонансное поглощение энергии радиоволны "замагниченными" ядрами. После прекращения облучения образца ядра атомов будут переходить в первоначальное состояние (релаксировать), при этом энергия, накопленная при облучении, будет высвобождаться в виде электромагнитных колебаний, которые можно зарегистрировать с помощью специальной аппаратуры.В медицинских томографах по ряду причин используется регистрация ЯМР на протонах — ядрах атомов водорода, входящих в состав молекулы воды. В силу того что используемый в МРТ метод чрезвычайно чувствителен даже к незначительным изменениям концентрации водорода, с его помощью удается не только надежно идентифицировать различные ткани, но и отличать нормальные ткани от опухолевых.Магнитно-резонансная томография (МРТ) обеспечивает точное изображение всех тканей организма, в особенности мягких тканей, хрящей, межпозвоночных дисков и мозга. Даже самые незначительные воспалительные очаги могут быть обнаружены на МРТ. Структуры с низким содержанием воды (кости или легкие) не поддаются томографии из-за низкого качества изображения.Магнитно-резонансная томография (МРТ) позволяет получить изображение практически всех тканей тела, поскольку имеется возможность изменять время действия потока радиоволн. Ввиду того, что магнитно-резонансная томография дает очень детальное изображение, она считается лучшей техникой для выявления различных опухолей, исследования нарушений центральной нервной системы и заболеваний опорно-двигательной системы. В результате магнитно-резонансной томографии (МРТ) получается полноценная, трехмерная картина исследуемой области тела. Благодаря магнитно-резонансной томографии (МРТ) появляется возможность, не используя контрастные вещества, тщательно обследовать многие органы и системы

Вопрос 78

Вопрос 1

Вращающееся вокруг своей оси ядро имеет собственный момент количества

движения (угловой момент, или спин) P. Магнитный момент ядра μ прямо пропорционален

спину: μ = γP. γ - коэффициент пропорциональности, называемый гиромагнитным

отношением. Эта величина является характерной для каждого типа ядер и составляет,

например, для 1H 2.675⋅10-8 рад/(Тл ⋅ с), для 13C 0.673⋅10-8 рад/(Тл ⋅ с).

Угловой и магнитный моменты являются квантованными. Разрешенные значения

проекции углового момента PZ на ось вращения определяются следующим соотношением:Pz= m1

где mI - магнитное квантовое число; h - постоянная Планка.

Оно может принимать значения, равные I, I-1; … -I, где Iспиновое квантовое

число, иными словами, находиться в одном из 2I+1 спиновых состояний.

При I = 1/2 возможны 2спиновых состояния (+1/2 и - 1/2)

При I = 1 - 3спиновых состояния (-1, 0, +1)

При I = 3/2 - 4спиновых состояния (-3/2, \1/2, +1/2 и +3/2)