Общая конструкция сканирующего зондового микроскопа

Лабораторная работа №1

Получение первого СЗМ изображения. Обработка и представление

Результатов эксперимента

Цель работы: изучение основ сканирующей зондовой микроскопии, конструкции и принципов работы прибора NanoEducator, получение первого СЗМ изображения, получение навыков обработки и представления экспериментальных результатов.

Приборы и принадлежности:прибор NanoEducator, образец для исследования: тестовый образец TGZ3 или любой другой по выбору преподавателя.

 

КРАТКАЯ ТЕОРИЯ

 

Общая конструкция сканирующего зондового микроскопа

СЗМ состоит из следующих основных компонентов (Рис. 1-1): 1 – зонд; 2 – образец; 3 – пьезоэлектрические двигатели x, y, z для прецизионного перемещения зонда над поверхностью исследуемого образца; 4 – генератор развертки, подающий напряжения на пьезодрайверы x и y, обеспечивающие сканирование зонда в горизонтальной плоскости; 5 – электронный датчик, детектирующий величину локального взаимодействия между зондом и образцом; 6 – компаратор, сравнивающий текущий сигнал в цепи датчика V(t) с изначально заданным VS, и, при его отклонении, вырабатывающий корректирующий сигнал Vfb; 7 – электронная цепь обратной связи, управляющая положением зонда по оси z; 8 – компьютер, управляющий процессом сканирования и получением изображения (9).

 

 

Рис. 1-1. Общая схема сканирующего зондового микроскопа. 1 – зонд; 2 – образец; 3 – пьезоэлектрические двигатели x, y, z; 4 – генератор напряжения развертки на x, y пьезокерамики; 5 – электронный датчик; 6 – компаратор; 7 – электронная цепь обратной связи; 8 – компьютер; 9 – изображение z(x,y)

 

Виды датчиков.Двумя основными методами зондовой микроскопии являются сканирующая туннельная микроскопия и атомно-силовая микроскопия.

При измерении туннельного тока в туннельном датчике (Рис. 1-2) используется преобразователь ток-напряжение (ПТН), включенный в цепь протекания тока между зондом и образцом. Возможны два варианта включения: с заземленным зондом, когда напряжение смещения подается на образец относительно заземленного зонда или с заземленным образцом, когда напряжение смещения прикладывается к зонду.

Традиционным датчиком силового взаимодействия является кремниевая микробалка, консоль или кантилевер (от англ. cantilever – консоль) с оптической схемой регистрации величины изгиба кантилевера, возникающего вследствие силового взаимодействия между образцом и зондом, расположенным на конце кантилевера (Рис. 1-3).

 

 

Рис. 1-2. Схема туннельного датчика Рис. 1-3. Схема силового датчика

 

Различают контактный, неконтактный и прерывисто-контактный («полуконтактный») способы проведения силовой микроскопии. Использование контактного способа предполагает, что зонд упирается в образец. При изгибе кантилевера под действием контактных сил отраженный от него луч лазера смещается относительно центра квадрантного фотодетектора. Таким образом, отклонение кантилевера может быть определено по относительному изменению освещенности верхней и нижней половинок фотодетектора.

При использование неконтактного способа зонд удален от поверхности и находится в области действия дальнодействующих притягивающих сил. Силы притяжения и их градиенты слабее отталкивающих контактных сил. Поэтому для их детектирования обычно используется модуляционная методика. Для этого с помощью пьезовибратора кантилевер раскачивается по вертикали на резонансной частоте. Вдали от поверхности амплитуда колебаний кантилевера имеет максимальную величину. По мере приближения к поверхности вследствие действия градиента сил притяжения резонансная частота колебаний кантилевера изменяется, при этом уменьшается амплитуда его колебаний. Эта амплитуда регистрируется с помощью оптической системы по относительному изменению переменной освещенности верхней и нижней половинок фотодетектора.

При «полуконтактном» способе измерений также применяется модуляционная методика измерения силового взаимодействия. В «полуконтактном» режиме зонд частично касается поверхности, находясь попеременно как в области притяжения, так и в области отталкивания.

Пьезоэлектрический двигатель. Сканеры.Для контролируемого перемещения иглы на сверхмалых расстояниях в СЗМ используются пьезоэлектрические двигатели. Их задача – обеспечить прецизионное механическое сканирование зондом исследуемого образца путем перемещения зонда относительно неподвижного образца или перемещения образца относительно неподвижного зонда. Работа большинства пьезоэлектрических двигателей, применяемых в современных СЗМ, основана на использовании обратного пьезоэффекта, который заключается в изменении размеров пьезоматериала под действием электрического поля. Основой большинства применяемых в СЗМ пьезокерамик является состав Pb(ZrTi)O3 (цирконат-титанат свинца) с различными добавками.

Удлинение закрепленной с одного конца пьезопластинки определяется выражением:

 

,

где l – длина пластины, h – толщина пластины, U – электрическое напряжение, приложенное к электродам, расположенным на гранях пьезопластины, d31 – пьезомодуль материала.

Конструкции из пьезокерамик, обеспечивающие перемещение по трем координатам x, y (в латеральной плоскости образца) и z (по вертикали), называются «сканерами». Существует несколько типов сканеров, наиболее распространенными из которых являются треногий и трубчатый (Рис. 1-4).

 

 

Рис. 1-4. Основные конструкции сканеров: а) – треногий, б) – трубчатый

 

В треногом сканере перемещения по трем координатам обеспечивают расположенные в ортогональную структуру три независимые пьезокерамики. Трубчатые сканеры работают посредством изгиба полой пьезоэлектрической трубки в латеральной плоскости и удлинения или сжатия трубки по оси Z. Электроды, управляющие перемещениями трубки в X и Y направлениях, размещаются в виде четырех сегментов по наружной поверхности трубки (Рис. 1-4 б). Для изгиба трубки в направлении X, на +X керамику подается напряжение для удлинения одной из ее сторон. Тот же самый принцип используется для задания движения в направлении Y. Смещения в X и Y направлениях

пропорциональны приложенному напряжению и квадрату длины трубки. Движение в Z направлении генерируется подачей напряжения на электрод в центре трубки. Это приводит к удлинению всей трубки пропорционально ее длине и приложенному напряжению.

Процесс сканирования поверхности в СЗМ (Рис. 1-5) имеет сходство с движением электронного луча по экрану в электроннолучевой трубке телевизора. Зонд движется вдоль линии (строки) сначала в прямом, а потом в обратном направлении (строчная развертка), затем переходит на следующую строку (кадровая развертка). Движение зонда осуществляется с помощью сканера небольшими шагами под действием пилообразных напряжений, подаваемых с генератора развертки (обычно, цифро-аналогового преобразователя). Регистрация информации о рельефе поверхности производится, как правило, на прямом проходе.

 

 

Рис. 1-5. Схематическое изображение процесса сканирования

 

К числу основных параметров, выбираемых перед началом сканирования, относятся:

- размер скана;

- число точек на линии NX и линий в скане NY, определяющие шаг сканирования Δ;

- скорость сканирования.

Параметры сканирования выбираются исходя из предварительных данных (размера характерных поверхностных особенностей), которые имеются у исследователя об объекте исследования.

При выборе размера скана необходимо получить наиболее полную информацию о поверхности образца, т.е. отобразить наиболее характерные особенности его поверхности. Например, при сканировании дифракционной решетки с периодом 3 мкм необходимо отобразить хотя бы несколько периодов, т.е. размер скана должен составлять 10 - 15 мкм. В случае если расположение особенностей на поверхности исследуемого объекта неоднородно, то для достоверной оценки необходимо провести сканирование в нескольких отстоящих друг от друга точках на поверхности образца. При отсутствии информации об объекте исследования сначала, как правило, проводят сканирование в области, близкой к максимально доступной для отображения, с целью получения обзорной информации о характере поверхности. Выбор размера скана при повторном сканировании осуществляют исходя из данных, полученных на обзорном скане.

Число точек сканирования (NX, NY) выбирается таким образом, чтобы шаг сканирования Δ (расстояние между точками, в которых производится считывание информации о поверхности) был меньше характерных ее особенностей, иначе произойдет потеря части информации, заключенной между точками сканирования. С другой стороны, выбор излишнего количества точек сканирования приведет к увеличению времени получения скана.

Скорость сканирования определяет скорость движения зонда между точками, в которых производится считывание информации. Излишне большая скорость может привести к тому, что система обратной связи не будет успевать отводить зонд от поверхности, что приведет к неправильному воспроизведению вертикальных размеров, а так же к повреждению зонда и поверхности образца. Малая скорость сканирования приведет к увеличению времени получения скана.

Система обратной связи.В процессе сканирования зонд может находиться над участками поверхности, имеющими различные физические свойства, в результате чего величина и характер взаимодействия зонд-образец будут изменяться. Кроме того, если на поверхности образца есть неровности, то при сканировании будет изменяться и расстояние ΔZ между зондом и поверхностью, соответственно будет изменяться и величина локального взаимодействия.

В процессе сканирования производится поддержание постоянной величины локального взаимодействия (силы или туннельного тока) с помощью системы отрицательной обратной связи. При приближении зонда к поверхности сигнал датчика возрастает (см. Рис. 1-1). Компаратор сравнивает текущий сигнал датчика с опорным напряжением Vs и вырабатывает корректирующий сигнал Vfb, используемый в качестве управляющего для пьезопривода, который отводит зонд от поверхности образца. Сигнал для получения изображения топографии поверхности берется при этом из канала z-пьезопривода.

На Рис. 1-6 показана траектория движения зонда относительно образца (кривая 2) и образца относительно зонда (кривая 1) при сохранении постоянной величины взаимодействия зонд-образец. Если зонд оказывается над ямкой или областью, где взаимодействие слабее, то образец приподнимается, в противном случае - образец опускается.

Отклик системы обратной связи на возникновение сигнала рассогласования Vfb=V(t) – VS определяется константой цепи обратной связи K (в приборе NanoEducator - Усиление ОС) или несколькими такими константами. Конкретные значения K зависят от особенностей конструкции конкретного СЗМ (конструкции и характеристик сканера, электроники), режима работы СЗМ (размера скана, скорости сканирования и т.п.), а также особенностей исследуемой поверхности (степень шероховатости, масштаб особенностей топографии, твердость материала и пр.).

 

 

 

Рис. 1-6. Траектория относительного движения зонда и образца в процессе поддержания системой обратной связи постоянного локального взаимодействия

 

В целом, чем больше значение K тем точнее цепь обратной связи отрабатывает черты сканируемой поверхности и тем достовернее данные, получаемые при сканировании. Однако при превышении некоторого критического значения K система обратной связи проявляет склонность к самовозбуждению, т.е. на линии скана наблюдается зашумленность.

 

Формат СЗМ данных, способы обработки и представления результатов эксперимента. Информация, полученная с помощью сканирующего зондового микроскопа, хранится в виде СЗМ кадра – двумерного массива целых чисел Zij (матрицы). Каждому значению пары индексов ij соответствует определенная точка поверхности в пределах поля сканирования. Координаты точек поверхности вычисляются с помощью простого умножения соответствующего индекса на величину расстояния между точками, в которых производилось считывание информации. Как правило, СЗМ кадры представляют собой квадратные матрицы, имеющие размер 200x200 или 300х300 элементов.

Визуализация СЗМ кадров производится средствами компьютерной графики, в основном, в виде двумерных яркостных (2D) и трехмерных (3D) изображений. При 2D визуализации каждой точке поверхности Z=f(x,y) ставится в соответствие тон определенного цвета в соответствии с высотой точки поверхности (Рис. 1-7 а). При 3D визуализации изображение поверхности Z=f(x,y) строится в аксонометрической перспективе с помощью пикселей или линий. Наиболее эффективным способом раскраски 3D изображений является моделирование условий подсветки поверхности точечным источником, расположенным в некоторой точке пространства над поверхностью (Рис. 1-7 б). При этом удается подчеркнуть отдельные малые особенности рельефа.

СЗМ изображения, наряду с полезной информацией, содержат также много побочной информации, искажающей данные о морфологии и свойствах поверхности. СЗМ изображения, как правило, содержат постоянную составляющую, которая не несет полезной информации о рельефе поверхности, а отражает точность подвода образца в середину динамического диапазона перемещений сканера по оси Z. Постоянная составляющая удаляется из СЗМ кадра программным способом.

 

 

Рис. 1-7. Способы графического представления СЗМ-изображений:

а) – 2D, б) – 3D с боковой подсветкой

 

 

Изображения поверхности, получаемые с помощью зондовых микроскопов, как

правило, имеют общий наклон. Это может быть обусловлено несколькими причинами. Во-первых, наклон может появляться вследствие неточной установки образца относительно зонда или неплоскопараллельности образца; во-вторых, он может быть связан с температурным дрейфом, который приводит к смещению зонда относительно образца; в-третьих, он может быть обусловлен нелинейностью перемещений пьезосканера. На отображение наклона тратится большой объем полезного пространства в СЗМ кадре, так что становятся не видны мелкие детали изображения. Для устранения данного недостатка производят операцию вычитания постоянного наклона (левелинга) (Рис. 1-8).

 

Рис. 1-8. Устранение постоянного наклона из СЗМ-изображения

 

Неидеальность свойств пьезосканера приводит к тому, что СЗМ изображение

содержит ряд специфических искажений. В частности, поскольку движение сканера в плоскости образца влияет на положение зонда над поверхностью (по оси Z), СЗМ изображения представляют собой суперпозицию реального рельефа и некоторой поверхности второго (а часто и более высокого) порядка. Для устранения искажений такого рода методом наименьших квадратов находится аппроксимирующая поверхность второго порядка, имеющая минимальные отклонения от исходной поверхности, и затем данная поверхность вычитается из исходного СЗМ изображения.

Шумы аппаратуры, нестабильности контакта зонд-образец при сканировании, внешние акустические шумы и вибрации приводят к тому, что СЗМ изображения, наряду с полезной информацией, имеют шумовую составляющую. Частично шумы СЗМ изображений могут быть удалены программными средствами с помощью применения различных фильтров.

 

Конструкция СЗМ NanoEducator.На Рис. 1-9 представлен внешний вид измерительной головки СЗМ NanoEducator и обозначены основные элементы прибора, используемые при работе. На Рис. 1-10 представлена конструкция измерительной головки. На основании 1 расположены сканер 7 с держателем образца 6 и механизм подвода 2 на основе шагового двигателя. Подвод зонда 5, закрепленного на датчике взаимодействия 4, к образцу можно также осуществлять с помощью винта ручного подвода 3. Предварительный выбор места исследования на образце осуществляется с помощью винта 8.

 

 

Рис. 1-9. Внешний вид измерительной головки NanoEducator: 1 – основание, 2 – держатель образца, 3 – датчик взаимодействия, 4 – винт фиксации датчика, 5 – винт ручного подвода, 6 – винты перемещения сканера с образцом, 7 – крышка с видеокамерой

 

 

Рис. 1-10. Конструкция СЗМ NanoEducator: 1 – основание, 2 – механизм подвода, 3 – винт ручного подвода, 4 – датчик взаимодействия, 5 – винт фиксации датчика, 6 – зонд, 7 – держатель образца, 8 – сканер, 9, 10 – винты перемещения сканера с образцом

 

На Рис. 1-11 представлена функциональная схема прибора. NanoEducator состоит из измерительной головки, электронного блока, соединительных кабелей и управляющего компьютера. Видеокамера изображена как отдельное устройство, соединенное с компьютером. Сигнал от датчика взаимодействия после преобразования в предусилителе поступает в СЗМ контроллер. Управляющие сигналы от электронного блока поступают в измерительную головку. Управление электронным блоком осуществляется от компьютера через контроллер связи с PC.

 

 

Рис. 1-11. Функциональная схема прибора. NanoEducator

 

Универсальный датчик туннельного тока и силового взаимодействия.В приборе NanoEducator применяется универсальный датчик туннельного тока и модуляционного силового взаимодействия. Датчик выполнен в виде пьезокерамической трубки длиной l = 7 мм, диаметром d = 1.2 мм и толщиной стенки h = 0.25 мм, жестко закрепленной с одного конца. На внутреннюю поверхность трубки нанесен проводящий электрод. На внешнюю поверхность трубки нанесены два электрически изолированных полуцилиндрических электрода. К свободному концу трубки прикреплена вольфрамовая проволока диаметром 100 мкм (Рис. 1-12). Свободный конец проволоки, использующейся в качестве зонда, заточен электрохимически, радиус закругления имеет величину 0.2-0.05 мкм. Зонд имеет электрический контакт с внутренним электродом трубки, соединенным с заземленным корпусом прибора. При измерении туннельного тока пьезотрубка играет роль жесткой пассивной консоли. Электрическое смещение прикладывается к образцу относительно заземленного зонда (Рис. 1-13). Преобразователь, изображенный на рисунке, вырабатывает электрическое напряжение Uт, обуславливающее протекание туннельного тока I и выдает напряжение U пропорциональное этому току в электронный блок.

 

 

Рис. 1-12. Конструкция универсального Рис. 1-13. Принцип регистрации туннельного датчика прибора NanoEducator тока

В качестве датчика силового взаимодействия одна часть пьезоэлектрической трубки используется как пьезовибратор, а другая – как датчик механических колебаний. К пьезовибратору подводится переменное электрическое напряжение с частотой, равной резонансной частоте силового датчика. Амплитуда колебаний при большом расстоянии зонд образец максимальна. Как видно из Рис. 1-14, в процессе колебаний зонд отклоняется от равновесного положения на величину Ао, равную амплитуде его вынужденных механических колебаний (она составляет доли микрона), при этом на второй части пьезоэлемента (датчике колебаний) возникает переменное электрическое напряжение, пропорциональное смещению зонда, которая и измеряется прибором.

При приближении зонда к поверхности образца зонд начинает касаться образца в процессе колебаний. Это приводит к смещению амплитудно-частотной характеристики (АЧХ) колебаний датчика влево по сравнению с АЧХ, измеренной вдали от поверхности (Рис. 1-14). Так как частота вынуждающих колебаний пьезотрубки поддерживается постоянной и равной ω0 в свободном состоянии, то при приближении зонда к поверхности амплитуда его колебаний уменьшается и становится равной A. Эта амплитуда колебаний регистрируется со второй половины пьезотрубки.

 

Рис. 1-14. Изменение частоты колебаний силового датчика при

приближении к поверхности образца

 

 

Сканер.Способ организации микроперемещений, использующийся в приборе NanoEducator, основан на использовании зажатой по периметру металлической мембраны, к поверхности которой приклеена пьезопластинка (Рис. 1-15 а). Изменение размеров пьезопластинки под действием управляющего напряжения будет приводить к изгибу мембраны. Расположив такие мембраны по трем перпендикулярным сторонам куба и соединив их центры металлическими направляющими, можно получить 3х-координатный сканер (Рис. 1-15 б).

Каждый пьезоэлемент 1, закрепленный на гранях куба 2, может передвигать прикрепленный к нему толкатель 3 в одном из трех взаимно перпендикулярных направлений – X, Y или Z при приложении к нему электрического напряжения. Как видно из рисунка, все три толкателя соединены в одной точке 4. С некоторым приближением можно считать, что эта точка перемещается по трем координатам X, Y, Z. К этой же точке прикрепляется стойка 5 с держателем образца 6. Таким образом, образец перемещается по трем координатам под действием трех независимых источников напряжения. В приборах NanoEducator максимальное перемещение образца составляет около 50-70 мкм, что и определяет максимальную площадь сканирования.

Рис. 1-15. Принцип действия (а) и конструкция (б) сканера прибора NanoEducator

 

Механизм автоматизированного подвода зонда к образцу (захват обратной связи). Диапазон перемещений сканера по оси Z составляет около 10 мкм, поэтому перед началом сканирования необходимо приблизить зонд к образцу на это расстояние. Для этого предназначен механизм подвода, схема которого приведена на Рис. 1-16. Шаговый двигатель 1 при подаче на него электрических импульсов вращает винт подачи 2 и перемещает планку 3 с зондом 4, приближая или отдаляя его от образца 5, установленного на сканере 6. Величина одного шага составляет около 2 мкм.

Рис. 1-16. Схема механизма подвода зонда к поверхности образца

 

Так как шаг механизма подвода значительно превосходит величину требуемого расстояния зонд-образец в процессе сканирования, то во избежание деформации зонда его подвод осуществляется при одновременной работе шагового двигателя и перемещениям сканера по оси Z по следующему алгоритму:

Система обратной связи отключается и сканер “втягивается”, т. е. опускает образец в нижнее крайнее положение:

1. Механизм подвода зонда производит один шаг и останавливается.

2. Система обратной связи включается, и сканер плавно поднимает образец, одновременно производится анализ наличия взаимодействия зонд-образец.

3. Если взаимодействие отсутствует, процесс повторяется с пункта 1.

Если во время вытягивания сканера вверх появится ненулевой сигнал, система

обратной связи остановит движение сканера вверх и зафиксирует величину взаимодействия на заданном уровне. Величина силового взаимодействия, при котором произойдет остановка подвода зонда, и будет происходить процесс сканирования, в приборе NanoEducator характеризуется параметром Амплитуда останова (подавление амплитуды).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1.Подготовка к измерениям.

После вызова программы NanoEducator на экране появляется главное окно. На Рис. 1-17 представлен фрагмент главного окна.

 

 

Рис. 1-17. Главное окно программы NanoEducator

 

 

Подготовку к измерениям рекомендуется проводить, используя окно Подготовка к сканированию. Окно открывается кнопкой на панели основных операций. Если контроллер прибора был включен до запуска программы NanoEducator, то при запуске программы произойдет автоматический выбор контроллера. В противном случае название контроллера следует выбрать в списке Выбор контроллера. Для работы прибора в качестве атомно-силового микроскопа, в меню Выбор режима выберите конфигурацию АСМ.