![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||
Категории: АстрономияБиология География Другие языки Интернет Информатика История Культура Литература Логика Математика Медицина Механика Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Транспорт Физика Философия Финансы Химия Экология Экономика Электроника |
II. Проведение эксперимента и обработка результатовЛабораторная работа № 8. Определение коэффициента внутреннего трения методом Стокса. Цель работы: определение коэффициента внутреннего трения в глицерине методом Стокса. Оборудование: прибор Стокса, стальные шарики, штангенциркуль, линейка, секундомер.
I. Основные понятия и определения.
1. Понятие о вязкости. При движении жидкости (под жидкостью можно понимать и газ) между её слоями возникают силы внутреннего трения, действующие таким образом, чтобы уравнять скорости всех слоёв. В газе возникновение этих сил объясняется тем, что слои, движущиеся с разными скоростями, обмениваются молекулами. Молекулы из более быстрого слоя передают более медленному некоторое количество направленного движения, вследствие чего последний начинает двигаться быстрее. Молекулы из более медленного слоя получают в быстром слое некоторое количество направленного движения, что приводит к его торможению. В жидкости взаимодействие между слоями обусловлено взаимодействием между молекулами (межмолекулярные) взаимодействие. Поэтому потери на трение обусловлены затратами энергии на разрыв связей. Рис. 8.1. Рассмотрим жидкость, движущуюся в направлении оси х (см. рис. 8.1 ). Пусть слои жидкости движутся с разными скоростями. На оси z возьмём две точки, находящиеся на расстоянии dz. Скорости потока отличаются в этих точках на величину dV. Отношение dV/dz характеризует изменение скорости потока в направлении оси z и называется градиентом скорости. Сила внутреннего трения (вязкости), действующая между двумя слоями, пропорциональна площади их соприкосновения и градиенту скорости:
Величина « Коэффициент динамической вязкости зависит от природы жидкости и для данной жидкости с повышением температуры уменьшается. Вязкость играет существенную роль при движении жидкостей. Слои жидкости, непосредственно прилегающей к твёрдой поверхности, в результате прилипания остаётся неподвижным относительно неё. Скорость остальных слоёв возрастает по мере удаления от твёрдой поверхности. Наличие слоя жидкости между трущимися поверхностями твёрдых тел способствует уменьшению коэффициента трения. Наряду с коэффициентом динамической вязкости «
В системе СГС единицей измерения коэффициента кинематической вязкости является 1 стокс: [
2. Метод Стокса. На движущийся в жидкости шарик действует сила внутреннего трения «f», тормозящая его движение. Эта сила по закону Стокса будет равна: f =6 где r – радиус шарика, На основании второго закона Ньютона имеем:
Решением полученного уравнения является:
в чём можно убедиться непосредственной подстановкой. Поскольку с течением времени величина
Здесь V= Скорость шарика можно определить, зная расстояние «
Формула (8.4) справедлива для шарика, падающего в безгранично простирающейся жидкости. Для нахождения
II. Проведение эксперимента и обработка результатов.
На аналитических весах взвесить шарик (перед взвешиванием шарики должны быть тщательно очищены от глицерина). С помощью штангенциркуля измерить диаметр шарика. Используя полученные данные, определить плотность материала, из которого изготовлен шарик:
7. Вывести формулу для оценки погрешностей опытов.
Таблица 8.1.
Контрольные вопросы.
1. Что такое вязкость? В каких единицах измеряется коэффициент вязкости? 2. Какие силы действуют на шарик, падающий в жидкости? 3. Почему, начиная с некоторого момента времени, шарик движется равномерно? 4. Как изменяется скорость движения шарика с увеличением его диаметра? 5. Нужно ли выводить поправочный коэффициент в формулу (4) в ваших измерениях? |