Скорость звука в воде - 1440м/с, в морской воде- 1560м/с, в металле ( железо) - 5000м/с, в земных породах 8000м/с
Звук может использоваться в качестве термометра, так как его скорость пропорциональна квадратному корню температуры. Этот метод без инерционен, позволяет отмечать колебания температуры 0.05 К, что недоступно жидкостным и ртутным термометрам. Помещенный на метеорологический зонд, поднимающийся с большой скоростью, термометр успевает фиксировать изменения температуры с точностью 0.05К.К примеру, скорость звука в воздухе при 0ºС составляет 331 м/с, при 20ºС – 343м/с.
2.4. Уравнение любой волны является решением волнового уравнения. Пусть в положительном направлении оси X распространяется плоская монохроматическая волна.
Тогда ( ) = Acos ( t-kx+j), следовательно
= -A ksin ( t-kx+j), =-k Acos ( t-kx+j), = -A w sin(t+)
- A cos ( t-kx+j). Из сопоставления вторых производных получим
= , = , т.е. множитель перед определяет квадрат скорости волны.
Уравнение любой волны является решением соответствующего волнового уравнения, получающегося из ньютоновского рассмотрения движения малого элемента среды. Так, плоская волна, распространяющаяся в газе в направлении оси Х, является решением уравнения = .
Для волны, распространяющейся в произвольном направлении, волновое уравнение должно связывать производные по Х,Y,Z,t соответствующим образом. + + = , или = , где
= + + - оператор Лапласа. Если такое уравнение в некоторой системе связывает пространственные и временные производные, то
это однозначно указывает на то, что в среде распространяется волна ( ) = Acos ( t-kx+j). Так, волновое уравнение для электромагнитной волны, распространяющейся в вакууме имеет вид E = , H = .
2.5. Энергия упругой (механической) волны.
Пусть в некоторой среде в направлении оси Х распространяется плоская продольная волна (x,t) = Asin ( t-kx+j). Выделим в среде малый элемент объема , настолько малый, чтобы деформацию и скорость движения во всех точках этого объема можно было считать одинаковыми и равными соответственно и . Выделенный объем обладает кинетической энергией = ( ) , аналогично
( -масса объема, - его скорость). Потенциальная энергия упругой деформации этого объема
= = ( )2V
где Е – модуль Юнга, e = - относительная деформация.
Полная энергия этого объема равна
полная = + = A cos ( t-kx+j) + A cos ( t-kx+j) = A cos ( t-kx+j) (rw +Ek = A cos ( t-kx+j) rw .
Разделив это значение на , получим объемную плотность энергии волны
= w = A cos ( t-kx+j)rw = A rw .
Плотность энергии в каждый момент времени в разных точках пространства различна. Среднее значение плотности энергии в точке пространства получим, усреднив данное выражение по времени с учетом того, что среднее значение от cos равно нулю.
<w> = A rw =22A2rf .
Среднее значение плотности энергии в данной точке среды пропорционально квадрату амплитуды, частоты и пропорциональна плотности среды .Такая зависимость характерна для всех видов волн (плоских, сферических, затухающих…).
Итак, среда, в которой распространяется волна, обладает дополнительным запасом энергии. Эта энергия доставляется в разные точки среды самой волной. Для характеристики этого процесса вводят понятие потока энергии.
Поток энергии Ф ( ) через некоторую поверхность S определяется как энергия, переносимая за единицу времени через эту поверхность. Поток- величина скалярная и измеряется в ваттах (Вт = 1Дж/с). Поток энергии может быть различен через разные элементы поверхности, поэтому для характеристики распределения потока через поверхность вводят понятие плотности потока энергии . Плотность потока – величина векторная. Вектор сонаправлен вектору скорости волны. Тогда поток через малую поверхность dS определяется как d Ф = = J dS cos ( , ), где параллелен нормали к поверхности . Плотность потока численно равна энергии , переносимой через единицу поверхности, расположенной перпендикулярно направлению переноса энергии , за единицу времени и измеряется в Вт/м . Плотность потока может быть разной в разных точках пространства, через которое волна проходит. Тогда поток через поверхность S равен Ф=jdS.
Рис.
В оптике, акустике часто используют величину интенсивности волны I. Она определяется как средняя по времени мощность, переносимая через единицу площади поверхности, перпендикулярной направлению потока.
I = v = =
<w> =22A2f2
Интенсивность волны пропорциональна квадрату амплитуды волны
I = <w>v = 22 A f v. Если источник точечный, то энергию, переносимую через поверхности разных радиусов можно считать постоянной, а интенсивность будет убывать с расстоянием обратно пропорционально r , так как I S = I1S1, где S = 4R = 4R и I = I .
2.7. Волны любой природы (механические, электромагнитные) могут
1) поглощаться в среде
2) отражаться и преломляться на границе двух сред,
3) накладываться друг на друга (принцип суперпозиции), проявляясь в явлениях дифракции и интерференции.
2.7.1. Поглощение волн в среде.
При распространении волны в среде энергия колебательного движения частично переходит во внутреннюю энергию частиц среды – в «тепло». Колебания частиц являются затухающими и плотность потока энергии w, переносимая волной, уменьшается по экспоненциальному закону
w = w0 e -x,
где - коэффициент поглощения (см. таб. 1), x -расстояние от границы среды до точки, где определяется поток.
Таблица 1. Значения коэффициентов поглощения звука для различных материалов.
Материал коэффициент поглощения
Бетон 0.015
Оштукатуренная кирпичная стена 0.025
Ковер 0.2
Войлок ( 2.5 см ) 0.78