Глава 1 . Порядок применения ДРА в воздушных пунктах пропуска

Введение.

С момента обретения странами СНГ независимости и их выход на мировой рынок в роли самостоятельного субъекта внешнеэкономической деятельности возникла необходимость в создании четкого механизма таможенного контроля.

Интенсивное развитие внешнеэкономических связей, значительное увеличение количества их участников, в том числе коммерческих структур, изменение таможенной политики в условиях становления рыночной экономики, расширение возможностей экспорта и импорта более широкой номенклатуры товаров - требуют от таможенных служб обеспечения высокопроизводительного, эффективного таможенного контроля грузов, транспортных средств, вещей лиц, следующих через государственную границу. Одним из определяющих неотъемлемых элементов в повседневной досмотровой работе оперативных работников таможен является применение ими технических средств таможенного контроля (ТСТК), без которых в настоящее время уже невозможно обеспечить своевременность, качество и культуру таможенного контроля. Высокая результативность контроля достигается комплексным применением технических средств на каждом конкретном участке таможенного контроля, будь-то ручная кладь и багаж пассажиров и транспортных экипажей, контроль средне и крупногабаритных грузовых отправок и отдельно следующего багажа, контроль международных почтовых отправлений, или всех видов транспортных средств международного сообщения. Причем для таможенного контроля каждого вида перемещаемых через госграницу объектов в соответствии с технологическими схемами организации таможенного контроля должны применяться те или иные специфические виды ТСТК. Хорошее знание оперативно-технических возможностей ТСТК, современных методик и способов их применения, овладение практическими навыками работы с ними - все это в значительной степени обеспечивает высокий профессиональный уровень таможенного контроля, начиная с обоснованного начисления пошлины и до выявления предметов контрабанды.

Для однозначного толкования понятия технических средств таможенного контроля принято следующее определение:

Технические средства таможенного контроля (ТСТК) - это комплекс специальных технических средств, применяемых таможенными службами непосредственно в процессе оперативного таможенного контроля всех видов перемещаемых через государственную границу объектов с целью выявления среди них предметов, материалов и веществ, запрещенных к ввозу и вывозу, или не соответствующих декларированному содержанию.

Под объектами, перемещаемыми через госграницу, понимаются - ручная кладь и сопровождаемый багаж пассажиров и транспортных служащих, несопровождаемый багаж пассажиров, все виды грузов, международные почтовые отправления, транспортные средства международного сообщения и в исключительных случаях конкретные лица (когда есть достаточные основания полагать, что они являются перевозчиками контрабандных товаров).

Как видно из определения, ТСТК - это необходимое "оружие" оперативных работников таможенной службы, использование которого обеспечивает экономическую и государственную безопасность страны.


 

Глава 1 . Порядок применения ДРА в воздушных пунктах пропуска.

Понятия и физические основы рентгеновских методов контроля .

В 1895 году немецкий физик В.Рентген открыл новый, не известный ранее вид электромагнитного излучения, которое в честь его первооткрывателя было названо рентгеновским. Было установлено, что это излучение обладает целым рядом удивительных свойств. Во-первых, невидимое для человеческого глаза рентгеновское излучение способно проникать сквозь непрозрачные тела и предметы. Во-вторых, оно способно поглощаться веществами тем интенсивнее, чем больше их атомный номер в периодической системе Менделеева. В-третьих, рентгеновское излучение вызывает свечение некоторых химических веществ и соединений. В-четвёртых, рентгеновские лучи обладают линейным характером распространения. Эти свойства рентгеновских лучей и используются для получения информации о внутреннем содержании и строении "просвечиваемых" ими объектов без их вскрытия.

Рентгеновские лучи в "табеле о рангах"- шкале электромагнитных волн, - имея диапазон длин волн от 0,06 до 20 ангстрем (IA=10-10 м), занимает место между ультрафиолетовым излучением и гамма-лучами и характеризуется энергией квантов от единиц килоэлектронвольт до сотен мегаэлектронвольт. Рентгеновское излучение образуется двумя путями. Первый - в результате торможения быстро движущихся электронов в веществе, так называемое "тормозное" излучение, второй – в результате изменения энергетического состояния атомов вещества, т.н. "характеристическое" излучение. Физику явлений можно показать на примере работы рентгеновской трубки, как специального электровакуумного высоковольтного прибора, предназначенного для генерирования рентгеновского излучения.

Рис.1. Шкала электромагнитных волн

На Рис. 2 схематично представлены основные узлы рентгеновской трубки: катод (1) нить накала (2), стеклянная или керамическая колба (3), анод (4) и источник высокого напряжения (5). Получение рентгеновского излучения осуществляется путём бомбардировки анода трубки пучком электронов, ускоренных приложенным к её электродам напряжением. Источником электронов является катод с нитью накала из вольфрамовой проволоки, который нагревается до высокой температуры (примерно 2500°С).

Рис.2. Схема основных узлов рентгеновской трубки

 

Фокусировка потока электронов в узкий пучок достигается оптимальным выбором электрического поля в межэлектродном пространстве. Направляющиеся от катода к аноду электроны бомбардируют анод, на поверхности тела которого происходит их резкое торможение, образуя, таким образом, тормозное излучение непрерывного спектра. Интенсивность его зависит от величины ускоряющего напряжения и атомного номера материала мишени анода. Чем выше атомный номер материала мишени, тем сильнее тормозятся в нём электроны. Поэтому, как правило, на изготовление анода идут материалы типа вольфрама, имеющие, кроме этого, высокую точку плавления и хорошую теплопроводность. Интенсивность тормозного излучения характеризуется так называемой "лучевой отдачей" рентгеновской трубки, зависящей, главным образом, от величины питающего трубку напряжения и уровня предварительной фильтрации излучения.

Оптические свойства рентгеновской трубки определяются формой и размерами оптического фокуса трубки, а также углом раствора пучка излучения. Кроме тормозного излучения при бомбардировке анода электронами возникает характеристическое рентгеновское излучение, вызванное, как уже говорилось, изменением энергетического состояния атомов. Если один из электронов внутренней оболочки атома выбит электроном или квантом тормозного излучения, то атом переходит в возбужденное состояние. Освободившееся место в оболочке заполняется электронами внешних слоев с меньшей энергией связи. При этом атом переходит в нормальное состояние и испускает квант характеристического излучения с энергией равной разности энергии на соответствующих уровнях. Частота характеристического рентгеновского излучения связана с атомным номером вещества анода. В отличие от непрерывного спектра тормозного рентгеновского излучения длины волн характеристического рентгеновского излучения имеют вполне определённые для данного материала анода значения.

При прохождении через исследуемое вещество пучок рентгеновского излучения ослабляется вследствие взаимодействия его с электронами, атомами и ядрами вещества. Основные процессы взаимодействия рентгеновского излучения с веществом при энергии квантов электромагнитного поля (фотонов) - менее 106 эВ - это фотоэлектрическое поглощение и рассеяние. Физика явлений при этом совершенно адекватна физике образования рентгеновского излучения.

Фотоэлектрическое поглощение рентгеновского излучения происходит при взаимодействии фотонов рентгеновского излучения с атомами вещества. Фотоны, попадая на атомы, выбивают электроны с внутренней оболочки атома. При этом первичный фотон полностью расходует свою энергию на преодоление энергии связи электрона в атоме и сообщает электрону кинетическую энергию. В результате энергетической перестройки атома, происходящей после вылета из атома фотоэлектрона, образуется характеристическое рентгеновское излучение, которое при взаимодействии с другими атомами может вызывать вторичный фотоэффект. Этот процесс будет происходить до тех пор, пока энергия фотонов не станет меньше энергии связи электронов в атоме. Очень важно отметить, что процесс ослабления излучения при прохождении через вещество зависит не только от энергии фотонов и длины волны излучения, но и от атомного номера вещества, в котором происходит фотоэлектрическое поглощение.

Образующееся при прохождении через вещество рассеянное излучение либо обусловлено тем, что под действием электрического поля электроны получают переменное ускорение, в результате которого они сами излучают электромагнитные волны с частотой, совпадающей с частотой первичного излучения и изменённым направлением излучения, (так называемое - когерентное рассеяние), либо обусловлено взаимодействием фотонов со свободными или слабо связанными электронами атома вещества (так называемое - комптоновское рассеяние).

Таким образом, в результате фотоэлектрического поглощения рентгеновского излучения в веществе и рассеяния - часть энергии первичного излучения остаётся в виде характеристического и рассеянного излучения, часть энергии поглощается, а часть - преобразуется в энергию заряженных частиц - электронов.

Прошедшее через предмет или вещество рентгеновское излучение ослабляется в различной степени в зависимости от распределения плотности их материала. Таким образом, оно несёт информацию о внутреннем строении объекта, т.е. образует рентгеновское изображение просвечиваемого объекта, которое затем преобразуется в адекватное оптическое изображение воспринимаемое глазами оператора. Возникающее рассеянное излучение не несёт информации о внутреннем строении предмета и только ухудшает качество формируемого изображения.

Основными требованиями к преобразователям рентгеновского изображения являются: максимальная информативность рентгеновского изображения при минимально возможной поглощённой дозе излучения просвечиваемым объектом и оптимальное преобразование рентгеновского изображения в оптическое, обеспечивающее получение оператором максимума информации, содержащейся в теневом рентгеновском изображении.

Качество рентгеновского изображения в основном определяется: контрастностью, яркостью, не резкостью и разрешающей способностью.

Контрастность изображения тем выше, чем меньше уровень рассеянного излучения. Реальные источники излучения дают расходящийся пучок лучей, выходящий из фокусного пятна анода рентгеновской трубки, причём интенсивность рентгеновского излучения убывает обратно пропорционально квадрату расстояния от фокуса рентгеновской трубки. Для получения большей интенсивности излучения в плоскости наблюдательного экрана и, следовательно, большей яркости свечения экрана при заданной мощности рентгеновской трубки выгодно максимально приближать фокус трубки и экран к исследуемому объекту. Однако в зависимости от расстояния от фокуса трубки до поверхности просвечиваемого объекта и от поверхности объекта до преобразователя рентгеновского изображения (экрана) возникает искажение геометрических соотношений в теневом рентгеновском изображении: одинаковые по размерам структуры элементов, находящихся на разных расстояниях до фокуса рентгеновской трубки, дают существенно различные по форме и площади тени. Поскольку размеры фокусного пятна трубки имеют конечную величину, переход от наибольшей яркости изображения к области полной тени происходит постепенно - вместо резкой границы образуется переходная область полутени. Контраст, обеспечивающий заданную вероятность обнаружения объекта и определяемый заданными параметрами изображения, а также условиями зрительной работы, принято называть пороговым контрастом. Этот параметр очень значим, т.к. практически оператор не знает того, где и когда в поле его зрения появится "запрещённый" объект. Кроме того, в поле зрения оператора представляется одновременно нескольких объектов, часть из которых он должен опознать по известным признакам с учётом таких факторов как определённое ограничение времени наблюдения (особенно при конвейерном способе контроля), побочные возбуждения оператора в производственных условиях, а также наличие шумов на изображении и его определённая не резкость.

Не резкость изображения определяется явлением рассеяния и конечными размерами фокусного пятна трубки. Не резкость тем больше, чем ближе трубка к просвечиваемому объекту и чем дальше находится от объекта преобразователь рентгеновского изображения (экран). При просвечивании движущегося объекта на не резкость его изображения накладывается так называемая динамическая не резкость, обусловленная инерционностью элементов системы визуализации рентгеновского изображения. К плавным переходам интенсивности между соседними участками рентгеновского излучения (не резкости) может привести и сама внутренняя структура просвечиваемого объекта, толщина элементов которого может изменяться постепенно.

Яркость изображения - это отношение силы света элемента излучающей поверхности к площади проекции этого элемента на плоскость, перпендикулярную направлению наблюдения. Яркость изображения в значительной степени, кроме мощности источника рентгеновского излучения, зависит от свойств применяемых рентгеновских экранов и детекторов, которые характеризуются достаточно высокими параметрами энергетического выхода люминесценции, высоким уровнем поглощения и высоким коэффициентом спектрального соответствия глазу человека.

Разрешающая способность - это способность давать чёткие раздельные изображения двух близких друг к другу мелких объектов. Пределом разрешения называется наименьшее линейное (для досмотровой рентгеновской техники) или угловое расстояние между двумя объектами, начиная с которого их изображения сливаются. В практике принято оценивать величину разрешающей способности числом линий на 1мм, причём толщина линий равна толщине промежутков между ними.