Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Теорема без доказательства

Дать определения монотонной функции четной и нечетной, периодической, ограниченной функций.

1) Монотонная функция — это функция, меняющаяся в одном и том же направлении. Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

2) Чётная функция — функция, не изменяющая своего значения при изменении знака независимого переменного (симметричная относительно оси ординат).

3) Нечётная функция — функция, меняющая знак при изменении знака независимого переменного (симметричная относительно центра координат).

4) Периодическая функция функция, повторяющая свои значения через какой-то регулярный интервал, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа.

5) Функция называется ограниченной, если существует такое положительное число M, что | f ( x ) | M для всех значений x

Билет 12.

Дать определение предела числовой последовательности; определения бесконеч-но малых (б.м.) и бесконечно больших (б.б.) числовых последовательностей. Рас-сказать о связи б.м. и б.б. числовых последовательностей.

Число а называется пределом числовой последовательности{xn}, если для любого сколь угодного малого положительного числа £ существует номер n0такой, что все элементы последовательности с номерами n>n0удовлетворяющие неравенству |xn - a|<£.

Число а называется пределом числовой последовательности {xn}, тогда и только тогда, когда вне любой £-окрестности точки а находится лишь конечное число элементов этой последовательности

Если предел числовой последовательности конечный, то последовательность называется сходящейся. Если предел числовой последовательности бесконечный или не существует называется расходящейся.

Бесконечно малая числовая последовательность – это последовательность, предел которой равен нулю.

Хn = 1/n, n = 1,2…. – является бесконечно малой.

Бесконечно большая последовательность — это последовательность, предел которой равен бесконечности.

{Xn} =

Связь бесконечно малой и большой числовой последовательности.

Теорема без доказательства.

Если {Xn} – бесконечно большая последовательность, то {1/Xn} является бесконечно малой последовательностью 1/бесконечность 0; Если {Xn} – бесконечно малая последовательность и все элементы последовательности отличны от 0, то последовательность {1/Xn} является бесконечно большой последовательностью 1/0.

которой равен произведению пределов последовательностей u.

Билет 17.

Дать определения б.м. и б.б. функций. Доказать, что если , то , где – б.м. функция при .

Функция y=f(x) называется б.м. при хх0, если limf(x)=0. Функция y=f(x) называется б.б. при хх0, если limf(x)=.

Если функция y=f(x) имеет конечный предел равны: А при хх0, то ее можно представить в виде суммы этого предела и бесконечно малой функции. Другими словами, если функция при хх0.

{f(x) = A+(x), lim(x)=0}.

Доказательство. По условию теоремы - . Обозначим|f(x)-A|=(x). lim(x)=0, то есть (х) – является бесконечно малой при хх0.

Итак: f(x) – A = (x); lim(x)=0, то есть f(x) =A + (x), где (х) – является бесконечно малая функция.

 

Билет 20.