|
||||||||
Категории: АстрономияБиология География Другие языки Интернет Информатика История Культура Литература Логика Математика Медицина Механика Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Транспорт Физика Философия Финансы Химия Экология Экономика Электроника |
Тема. Свойства газов. Идеальный газ1. Строение газообразных, жидких и твердых тел Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях.
Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется (рис.8.6). Молекулы с огромными скоростями - сотни метров в секунду - движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут нео граниченно расширяться. Они не сохраняют ни формы, ни объема.
Жидкости. Молекулы жидкости расположены почти вплотную друг к другу (рис.8.7), поэтому молекула жидкости ведет себя иначе, чем молекула газа. В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения равновесия, сталкиваясь с соседними молекулами. Лишь время от времени она совершает очередной «прыжок», попадая в новое положение равновесия. В этом положении равновесия сила отталкивания равна силе притяжения, т. е. суммарная сила взаимодействия молекулы равна нулю. Время оседлой жизни молекулы воды, т. е. время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10-11 с. Время же одного колебания значительно меньше (10-12-10-13 с). С повышением температуры время оседлой жизни молекул уменьшается. Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я.И.Френкелем, позволяет понять основные свойства жидкостей.
Твердые тела. Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.
На рисунке 8.11 показаны якутские алмазы. 2 . Идеальный газ в молекулярно-кинетической теории Изучение любой области физики всегда начинается с введения некой модели, в рамках которой идет изучение в дальнейшем. Например, когда мы изучали кинематику, моделью тела была материальная точка и т. д. Как вы уже догадались, модель никогда не будет соответствовать реально происходящим процессам, но часто она очень сильно приближается к этому соответствию. Молекулярная физика, и в частности МКТ, не является исключением. Над проблемой описания модели работали многие учёные, начиная с восемнадцатого века: М. Ломоносов, Д. Джоуль, Р. Клаузиус (Рис. 1). Последний, собственно, и ввёл в 1857 году модель идеального газа. Качественное объяснение основных свойств вещества на основе молекулярно-кинетической теории не является особенно сложным. Однако теория, устанавливающая количественные связи между измеряемыми на опыте величинами (давлением, температурой и др.) и свойствами самих молекул, их числом и скоростью движения, весьма сложна. У газа при обычных давлениях расстояние между молекулами во много раз превышает их размеры. В этом случае силы взаимодействия молекул пренебрежимо малы и кинетическая энергия молекул много больше потенциальной энергии взаимодействия. Молекулы газа можно рассматривать как материальные точки или очень маленькие твердые шарики. Вместо реального газа, между молекулами которого действуют сложные силы взаимодействия, мы будем рассматривать его модель – идеальный газ. Рис. 1. Джеймс Джоуль, Михаил Ломоносов, Рудольф Клаузиус Идеальный газ– модель газа, в рамках которого молекулы и атомы газа представлены в виде очень маленьких (исчезающих размеров) упругих шариков, которые не взаимодействуют друг с другом (без непосредственного контакта), а только сталкиваются (см. Рис. 2). Следует отметить, что разреженный водород (под очень маленьким давлением) практически полностью удовлетворяет модели идеального газа. Рис. 2. Идеальный газ - это газ, взаимодействие между молекулами которого пренебрежимо мало. Естественно, при столкновении молекул идеального газа на них действует сила отталкивания. Так как молекулы газа мы можем согласно модели считать материальными точками, то размерами молекул мы пренебрегаем, считая, что объем, который они занимают, гораздо меньше объема сосуда.
Идеальный газ - модель реального газа. Согласно этой модели молекулы газа можно рассматривать как материальные точки, взаимодействие которых происходит только при их столкновении. Сталкиваясь со стенкой, молекулы газа оказывают на нее давление. 4. Микро- и макропараметры газа Теперь можно приступить к описанию параметров идеального газа. Они делятся на две группы: Параметры идеального газа То есть микропараметры описывают состояние отдельно взятой частицы (микротела), а макропараметры – состояние всей порции газа (макротела). Запишем теперь соотношение, связывающее одни параметры с другими, или же основное уравнение МКТ: Здесь: - средняя скорость движения частиц; Определение. – концентрация частиц газа – количество частиц, приходящихся на единицу объёма; ; единица измерения – .
5. Среднее значение квадрата скорости молекул Для вычисления среднего давления надо знать среднюю скорость молекул (точнее, среднее значение квадрата скорости). Это не простой вопрос. Вы привыкли к тому, что скорость имеет каждая частица. Средняя же скорость молекул зависит от движения всех частиц. где N - число молекул в газе. Средние значения величин можно определить с помощью формул, подобных формуле (8.9). Между средним значением и средними значениями квадратов проекций существует такое же соотношение, как соотношение (8.10): Действительно, для каждой молекулы справедливо равенство (8.10). Сложив такие равенства для отдельных молекул и разделив обе части полученного уравнения на число молекул N, мы придем к формуле (8.11). Видите, из хаоса выплывает определенная закономерность. Смогли бы вы это сообразить сами? т. е. средний квадрат проекции скорости равен 1/3 среднего квадрата самой скорости. Множитель 1/3 появляется вследствие трехмерности пространства и соответственно существования трех проекций у любого вектора. 6. Основное уравнение молекулярно-кинетической теории При ударе молекулы о стенку ее импульс изменяется: . Так как модуль скорости молекул при ударе не меняется, то . Согласно второму закону Ньютона изменение импульса молекулы равно импульсу подействовавшей на нее силы со стороны стенки сосуда, а согласно третьему закону Ньютона таков же по модулю импульс силы, с которой молекула подействовала на стенку. Следовательно, в результате удара молекулы на стенку подействовала сила, импульс которой равен .
Молекул много, и каждая из них передает стенке при столкновении такой же импульс. За секунду они передадут стенке импульс , где Z - число столкновений всех молекул со стенкой за это время. Число очевидно, прямо пропорционально концентрации молекул, т. е. числу молекул в единице объема. Кроме того, число Z пропорционально скорости молекул . Чем больше эта скорость, тем больше молекул за секунду успеет столкнуться со стенкой. Если бы молекулы «стояли на месте», то столкновений их со стенкой не было бы совсем. Кроме того, число столкновений молекул со стенкой пропорционально площади поверхности стенки S: . Надо еще учесть, что в среднем только половина всех молекул движется к стенке. Другая половина движется в обратную сторону. Значит, число ударов молекул о стенку за время 1 с и полный импульс, переданный стенке за 1 с, равен: Согласно второму закону Ньютона изменение импульса любого тела за единицу времени равно действующей на него силе: . Это и есть основное уравнение молекулярно-кинетической теории газов. Таким образом, основное уравнение МКТ вводит нам прямо пропорцио-нальную зависимость макропараметра давления от микропараметров массы молекулы и средней скорости движения в квадрате. То есть чем тяжелее частицы и чем больше их скорости, тем сильнее они врезаются в стенки сосуда и тем большее оказывают давление. Возможны и другие формы записи этого уравнения, если вспомнить некоторые формулы из более ранних разделов физики: - средняя кинетическая энергия поступательного движения |