Особенности отдельных видов ощущений

 

Зрительные ощущения. Для возникновения зрительных ощущений необходимо воздействие электромагнитных волн на1 зрительный рецептор – сетчатку глаза (скопление фоточувствительных нервных клеток, расположенных на дне глазного яблока)(рис. 19).


 

Рис. 19. Строение глаза.

 

Ощущаемые человеком цвета делятся нахроматические(от греч. chromatos – цвет) иахроматические – бесцветные (черный, белый и промежуточные оттенки серого цвета).

В центральной части сетчатки преобладают нервные клетки –колбочки, обеспечивающие ощущение цвета. На краях сетчатки преобладают палочки, чувствительные к перепадам яркости. (В сетчатке глаза 130 млн. палочек и колбочек.)

Если освещенность превышает 0,1 лм/м2, используется цветочувствительная (колбочковая) система зрения; когда же освещенность ниже 0,01 лм/м2, используется система сумеречного (палочкового) зрения. При освещенности между 0,1 и 0,01 лм/м2 реагируют обе системы – это смешанное ("мезопическое") зрение. (На рассвете или при заходе солнца различается цвет неба, но объекты на земле мы видим окрашенными только в оттенки серого.)

Сигналы от фоторецепторов – светочувствительных образований (колбочек и палочек) поступают к более крупным (ганглиозным) нейронам сетчатки. Каждая ганглиозная клетка отсылает свой отросток (аксон) в зрительный нерв (рис. 20).

Идущие к мозгу по зрительному нерву импульсы получают вторичную обработку в промежуточном мозге (коленчатых телах). Здесь усиливаются контрастные характеристики сигналов, фиксируется их временная последовательность. И уже отсюда нервные импульсы поступают в первичную зрительную кору, локализованную в затылочной области полушарий мозга (17–19 поля по Бродману) (рис. 21).

 

Рис. 20. Сетчатка глаза

Сетчатка глаза состоит из 125 млн. светочувствительных палочек (реагирующих на ахроматические воздействия) и 5 млн. колбочек (реагирующих на хроматические воздействия). В зрительном же нерве лишь 80 тыс. волокон: первичное преобразование зрительного сигнала осуществляется уже в самой сетчатке, в ганглиозных клетках, аксоны которых образуют зрительный нерв.

 

Далее зрительные сигналы обрабатываются во вторичной зрительной коре. У человека вторичная зрительная кора очень развита (в 20 раз больше, чем у высших обезьян), она находится в функциональных связях с другими анализаторами и с центрами речи.

Световые (электромагнитные) волны разной длины вызывают разные цветовые ощущения. Цвет – это психическое явление, ощущение человека, вызываемое различной длиной электромагнитных излучений. Глаз человека чувствителен к участку электромагнитного спектра от 300 до 700 нм (нанометров). Длина волны 700 нм дает ощущение красного; 580 – желтого; 520 – зеленого; 430 – синего; 390 – фиолетового цветов (рис. 22).

Смешение всех воспринимаемых электромагнитных волн дает ощущение белого цвета (рис. 23).

К различным участкам электромагнитного спектра наш глаз имеет неодинаковую чувствительность. Глаз наиболее чувствителен к световым лучам с длиной волны 555–565 нм (светло-салатный цветовой тон). В условиях сумерек чувствительность зрительного анализатора перемещается в сторону более коротких волн – 500 нм (синий цвет). Эти лучи начинают казаться более светлыми (явление, Пуркине). Палочковый аппарат более чувствителен к ультрафиолетовому цвету.

Существуеттрехкомпонентная теория цветового зрения,согласно которой все многообразие цветовых ощущений возникает в результате работы лишь трех видов цветовоспринимающих рецепторов – красного, зеленого и синего. Колбочки делятся на группы этих трех цветов. В зависимости от степени возбуждения этих цветорецепторов возникают различные цветовые ощущения. Если все три рецептора возбуждены в одинаковой мере, то возникает ощущение белого цвета.

Для зрительных возбуждений характерна некоторая инертность. Это является причиной кратковременного (0,25 с) сохранения следа светового раздражения после прекращения воздействия раздражителя. (Поэтому мы не замечаем перерывов между кадрами фильма. Эти перерывы оказываются заполненными следами от предшествующего кадра.)

Для зрительного анализатора существенное значение имеет перепад яркостей – контраст. Зрительный анализатор способен различать контраст в определенных пределах (оптимум 1 : 30).

 

Электромагнитные излучения

 


Рис. 23. Цветовой круг.

Противоположные цвета называются дополнительными – при смешении они образуют белый цвет. Любой цвет может быть получен путем смешения пограничных с ним цветов. Смешение всех цветов образует белый цвет.

 

Усиление контраста возможно посредством применения различных средств. (Для выявления слабозаметного рельефа усиливается теневой контраст путем бокового освещения, использования светофильтров.)

Цвет каждого объекта характеризуется теми лучами светового спектра, которые объект отражает. (Объект красного цвета, например, поглощает все лучи светового спектра, кроме красного, которые отражаются им.) Цвет прозрачных объектов характеризуется теми лучами, которые они пропускают. Таким образом, цвет любого объекта зависит от того, какие лучи он отражает, поглощает и пропускает.

В большинстве случаев объекты отражают электромагнитные волны различной длины. Но зрительный анализатор воспринимает их не раздельно, а суммарно. Например, отражение красного и желтого цветов воспринимается как оранжевый цвет, происходит смешение цветов (рис. 23).

Семь цветов радуги – это условность. Между интенсивно выраженными цветами существует масса промежуточных нюансов. Коренные жители Севера различают до 30 оттенков белого снега. А прежние красильщики-кустари – до 40 оттенков черного цвета. Семь цветов, помещенных в цветовом круге, тоже условность: они были ассоциированы Ньютоном в Соответствии с семью звуками музыкальной гаммы. В действительности человеческий глаз различает тысячи цветовых нюансов.

Люди с ослабленным аппаратом колбочек плохо различают хроматические цвета. (Этот недостаток, описанный английским физиком Д. Дальтоном, называется дальтонизмом.) Ослабление работы аппарата палочек затрудняет видение предметов в сумеречном освещении. (Этот недостаток называется "куриной слепотой".)

Цвет – мощный фактор организации окружающей среды. Оптимальной окраской цехов и машин достигается значительное повышение производительности труда, снижается производственный травматизм. Красный и оранжевый цвета создают впечатление теплоты и уюта, черный – тяжести и холода. Установка для подачи песка выглядит красиво, если ее элементы окрашены в голубовато-стальные тона. Оборудование, окрашенное в голубой и бежевый цвета, вызывает к себе более бережное отношение, повышается аккуратность в работе. Гамма красок и цветовых лучей влияет на работоспособность и состояние кровяного давления, на настроение и направленность внимания, на доминирующие эмоции, остроту зрения и слуха. (В порядке эксперимента аппетитно накрытый стол был освещен светофильтром, резко изменившим окраску привычной пищи: салат стал фиолетовым, а мясо серым, зеленый горошек превратился в серо-черную массу, молоко приобрело фиолетовый цвет, а яичный желток стал красно-коричневым. Гости не могли даже притронуться к столь странно выглядевшей пище. А тем, кто рискнул ее испробовать, стало плохо.)

В урну, поставленную на белый круг, мусор стали бросать более аккуратно. Коридоры, окрашенные в светло-желтые тона, стали меньше пачкаться. Показания приборов считываются лучше, если они окрашены в теплые, приятные тона. Человеческий мозг не только создает цветовую гамму из электромагнитных излучений разной длины, но и любуется своим прекрасным творением.

Слуховые ощущения. Существует мнение, что 90% информации об окружающем нас мире мы получаем посредством зрения. Вряд ли это можно подсчитать. Ведь то, что мы видим глазом, должно охватываться нашей понятийной системой, которая формируется интегративно как синтез всей сенсорной деятельности.

Работа слухового анализатора не менее сложна и важна, чем работа зрительного анализатора. По этому каналу идет основной поток речевой информации.

Рис. 24. Схема строения уха.

Звуковые колебания внешней среды проходят по ушному каналу к барабанной перепонке, расположенной между наружным и средним ухом. Барабанная перепонка передает вибрации в костный механизм среднего уха, который, действуя по рычажному принципу, усиливает звук примерно в тридцать раз. В результате этого незначительные изменения давления у барабанной перепонки передаются поршнеобразным движением в овальное окно внутреннего уха. Это вызывает движение жидкости в улитке. Действуя на упругие стенки канала улитки, движение жидкости вызывает колебательное движение слуховой мембраны, точнее, определенной ее части, резонирующей на соответствующие частоты. При этом тысячи волоскообразных нейронов трансформируют колебательное движение в электрические импульсы определенной частоты, которые направляются к слуховым центрам мозга. Круглое окно и евстахиева труба служат для выравнивания давления с внешней средой: выходя в область носоглотки, евстахиева труба приоткрывается при глотательных движениях.

 

Человек ощущает звук через 175 миллисекунд после того, как он достиг ушной раковины. Еще 200–500 мс необходимо для возникновения максимальной чувствительности к данному звуку. Необходимо также время для поворота головы и соответствующей ориентации ушной раковины по отношению к источнику слабого звука.

Строение уха. От козелка ушной раковины в височную кость углубляется овальный слуховой проход (его длина 2,7 см). Уже в овальном проходе звук значительно усиливается (за счет резонансных свойств). Овальный проход замыкается барабанной перепонкой (ее толщина 0,1 мм, а длина – 1 см), она постоянно вибрирует под влиянием звуковых воздействий. Барабанная перепонка отделяет наружное ухо от среднего – небольшой камеры объемом в 1 см3.

Полость среднего уха соединена овальным окном с внутренним ухом и круглым окном с носоглоткой. (Поступающий из носоглотки воздух уравновешивает внешнее и внутреннее давление на барабанную перепонку.)

В среднем ухе звук многократно усиливается посредством системы косточек (молоточка, наковальни и стремечка). Эти косточки поддерживаются на весу двумя мышцами которые натягиваются при слишком громких звуках и ослабляют работу косточек, защищая слуховой аппарат от травмы При слабых звуках мышцы усиливают работу косточек Интенсивность звука в среднем ухе повышается в 30 раз благодаря разнице между площадью барабанной перепонки (90 мм2), к которой присоединен молоточек, и площадью основания стремечка (3 мм2).

Следующий отдел слуховой системы – внутреннее ухо – начинается с так называемой улитки. Она имеет 2,5 оборота и разделена поперечно мембраной на два изолированных канала, заполненных жидкостью (перелимфой). Вдоль мембраны которая сужается от нижнего завитка улитки к верхнему ее завитку, расположено 30 тысяч чувствительных образований-ресничек – они и являются звуковыми рецепторами, образуя так называемый кортиев орган. В улитке первично расчленяются звуковые колебания. Низкие звуки воздействуют на длинные реснички, высокие – на короткие. Колебания соответствующих звуковых ресничек и создают нервные импульсы поступающие в височную часть головного мозга, где осуществляется сложная аналитико-синтетическая деятельность. Важнейшие для человека сигналы – сигналы словесные – кодируются в нейронных ансамблях. Слуховой анализатор чувствителен к высоте, силе и тембру звука (рис. 25).

Высота звука определяется количеством колебаний источника звука в 1 сек (1 колебание в секунду называется герцем) Орган слуха чувствителен к звукам в пределах от 16 до 20 тыс. колебаний в секунду. Но наибольшая слуховая чувствительность лежит в пределах 2000–3000 герц (это высота звука, соответствующая крику испуганной женщины).

 

ЧИСТЫЙ ТОН

ПЕРИОДИЧЕСКИЙ ЗВУК

НЕПЕРИОДИЧЕСКИЙ ЗВУК

 

Рис. 25. Параметры звуковых колебаний.

Интенсивность звука определяется амплитудой колебания его источника. Высота – частотой колебаний. Тембр – дополнительными колебаниями (обертонами) в каждой фазе (средний рисунок).

 

Человек не ощущает звуки самых низких частот (инфразвуки). Однако подпороговые низкочастотные звуки влияют на психическое состояние человека. Так, звуки с частотой в 6 герц вызывают у человека головокружение, ощущение усталости, .угнетенности, а звуки с частотой 7 герц способны даже вызывать остановку сердца. Попадая в естественный резонанс работы внутренних органов, инфразвуки могут нарушить их деятельность. Другие инфразвуки также избирательно воздействует на психику человека, повышая его внушаемость, обучаемость и т. п.

Звуки, лежащие за верхним порогом звуковой чувствительности (т. е. свыше 20 тыс. герц), называются ультразвуками.

Животным доступны ультразвуковые частоты в 60 и даже 100 тыс. герц. В нашей речи обнаруживаются звуки до 140 тыс. герц. Можно предположить, что они воспринимаются нами на подсознательном уровне и несут в себе эмоциональную информацию.

Пороги различения звуков по высоте составляют 1/20 полутона (т. е. различается до 20 промежуточных ступеней между звуками, издаваемыми двумя соседними клавишами рояля).

Интенсивность слухового ощущения – громкость – зависит от интенсивности звука, т. е. от амплитуды колебаний источника звука и от высоты звука.

Кроме звуковысотной чувствительности существуют нижние и верхние пороги чувствительности к силе звука. С возрастом звуковая чувствительность понижается. Так, для четкого восприятия речи в 30 лет необходима громкость в 40 децибел, а для восприятия речи в 70 лет ее громкость должна быть не ниже 65 децибел.

 

Таблица 5.

Пространственные пороги тактильной чувствительности *

   
Зона высокой чувствительности   Зона низкой чувствительности  
Кончик языка – 1 мм   Крестец – 40,4 мм  
Концевые фаланги пальцев рук – 2,2 мм   Ягодицы – 40,5 мм  
Красная часть губ – 4,5 мм   Предплечье и голень – 40,5 мм  
Ладонная сторона кисти – 6,7 мм   Грудина – 45,5 мм  
Концевая фаланга большого пальца ноги – 11,2 мм   Шея ниже затылка – 54,1 мм Поясница – 54,1 мм  
Тыльная сторона вторых фаланг пальцев ноги – 11,2 мм   Спина и середина шеи – 67,6 мм  
Тыльная сторона первой фаланги большого пальца ноги – 15,7 мм   Плечо и бедро –67,7 мм  

* Порог пространственной тактильной чувствительности – минимальное расстояние между двумя точечными прикосновениями, при котором эти воздействия воспринимаются раздельно.

 

Верхний порог звуковой чувствительности (по громкости) – 130 дб. Оптимальный уровень – 40–50 дб.

Шум свыше 90 децибел вреден для человека. Опасны внезапные громкие звуки, бьющие по вегетативной нервной системе и ведущие к резкому сужению просвета кровеносных сосудов, учащению сердцебиения и повышению в крови адреналина. Релаксационное (успокаивающее) и психотерапевтическое воздействие оказывают гармоничные, музыкальные звуки.

Тактильные ощущения – ощущения прикосновения. Тактильные рецепторы наиболее многочисленны на кончиках пальцев и языка. Если на спине две точки прикосновения воспринимаются раздельно лишь на расстоянии 67 мм, то на кончике пальцев и языка – на расстоянии 1 мм (табл. 5).

Тактильные ощущения в сочетании с двигательными образуют осязательную чувствительность, лежащую в основе предметных действий. Тактильные ощущения – разновидность кожных ощущений, к которым относятся также ощущение давления, температурные и болевые ощущения (рис. 26).

Кинестезические (двигательные) ощущения. Наши движения связаны с кинестезическими ощущениями (от греч. kineo – двигаюсь и aisthesis – чувствительность) – ощущением положения и перемещения частей собственного тела.

Трудовые движения руки имели решающее значение в формировании мозга, человеческой психики. Проприорецепторы руки и лица широко представлены в коре мозга (рис. 27).

На основе мышечно-суставных ощущений человек определяет соответствие или несоответствие своих движений внешним обстоятельствам. Кинестезические ощущения выполняют интегрирующую функцию во всей сенсорной системе человека.

Хорошо отдифференцированные произвольные движения – результат аналитико-синтетической деятельности обширной корковой зоны, расположенной в теменной области мозга. Двигательная, моторная зона коры мозга особенно тесно связана с лобными долями мозга, осуществляющими интеллектуально-речевые функции, и со зрительными зонами мозга.

Мышечные веретенообразные рецепторы особенно многочисленны в пальцах рук и ног.

Придвижении различных частей тела мозг постоянно получает информацию об их текущем пространственном положении, сравнивает эту информацию с образом конечного результата действия и осуществляет соответствующую коррекцию движения. В результате тренировки образы промежуточных положений различных частей тела обобщаются в единой модели конкретного действия – действие стереотипизируется, автоматизируется и становится навыком.

 

Рис. 26. Рецепторы, кожной чувствительности.

Рис. 27. Относительное представительство различных частей тела в коре головного мозга (по Пенфилду).


Все движения регулируются на основе двигательных ощущений, на основе обратной связи.

Двигательная физическая активность организма имеет существенное значение для оптимизации работы мозга: проприорецепторы скелетных мышц посылают в мозг стимулирующие его импульсы, повышают тонус коры головного мозга.

Статические ощущения – ощущение положения тела в пространстве относительно направления силы тяжести, ощущение равновесия. Рецепторы этих ощущений (гравиторецепторы) находятся во внутреннем ухе.

Рецептором вращательных движений тела являютсяполукруакные каналы внутреннего уха, расположенные в трех взаимно перпендикулярных плоскостях. При ускорении или замедлении вращательного движения жидкость, заполняющая полукружные каналы, оказывает давление (по закону инерции) на чувствительные волоски, в которых вызывается соответствующее возбуждение.

Рис. 28. Вестибулярный аппарат (гравиторецепторы):

полукружные каналы; отолитовый аппарат.


Рис. 29. Границы допустимых вибраций.

1 – Границы допустимых вибраций для отдельных частей тела;

2 – границы допустимых вибраций, действующих на все тело человека;

3 – границы слабо ощущаемых вибраций.

 

Перемещение в пространстве по прямой линии отражается вотолитовом аппарате. Он состоит из чувствительных клеток с волосками, над которыми расположены отолиты (подушечки с кристаллическими включениями). Изменение положения кристаллов сигнализирует мозгу направление прямолинейного движения тела. Полукружные каналы и отолитовый аппарат вместе носят названиевестибулярного аппарата (рис. 28).

Он связан с височной областью коры и с мозжечком посредством вестибулярной ветви слухового нерва. (Сильное перевозбуждение вестибулярного аппарата вызывает тошноту, так как этот аппарат связан и с внутренними органами.)

 

Рис. 30. Обонятельные рецепторы.

Вибрационные ощущения возникают в результате отражения колебаний от 15 до 1500 герц в упругой среде. Эти колебания отражаются всеми частями тела.

Вибрации для человека утомительны и даже болезненны. Многие из них недопустимы (рис. 29).

Обонятельные ощущения возникают в результате раздражения частицами пахучих веществ, находящихся в воздухе, слизистой оболочки носовой полости, где находятся обонятельные клетки (рис. 30).

Вещества, раздражающие обонятельные рецепторы, проникают в полость носоглотки со стороны носа и носоглотки. Это позволяет определить запах вещества, находящегося как на расстоянии, так и во рту. Обонятельные ощущения – самый архаичный вид рецепции. В глубинных мозговых структурах он представлен особым образованием – обонятельной луковицей.

Вкусовые ощущения. Все многообразие вкусовых ощущений состоит из комбинации четырех вкусов:горького, соленого, кислого и сладкого. Вкусовые ощущения вызываются химическими веществами, растворенными в слюне или в воде.

Рис. 31. Вкусовая рецепция.

Относительная концентрация вкусовых рецепторов на поверхности языка.

 

Рецепторами вкусовых ощущений являются нервные окончания, расположенные на поверхности языка, –вкусовые сосочки. Они расположены на поверхности языка неравномерно. Отдельные участки поверхности языка наиболее чувствительны к отдельным вкусовым воздействиям: кончик языка чувствителен к сладкому, задняя часть – к горькому, а края – к кислому (рис. 31).

Поверхность языка чувствительна также к прикосновениям, т. е. участвует в формировании тактильных ощущений. (Консистенция пищи влияет на вкусовые ощущения.)

Температурные ощущения возникают от раздражения терморецепторов кожи. Существуют отдельные рецепторы для ощущениятепла и холода. На тепловые воздействия реагируют тельца Руффини, на холод – колбочки Краузе (рис. 26). На поверхности тела эти рецепторы расположены неравномерно. К холоду более чувствительна кожа спины и шеи, а к горячему – кончики пальцев и языка. Различные участки кожного покрова сами имеют разную температуру (рис. 32).


Рис. 32. Топография кожной температуры у человека (по А. Д. Слониму).

Присущая определенному участку кожи температура является физиологическим нулем. Ощущение тепла или холода возникает в зависимости от соотношения температуры воздействия с постоянной температурой данного участка кожи.

 

Болевые ощущения вызываются механическими, температурными и химическими воздействиями, достигшими сверхпороговой интенсивности. Болевые ощущения в значительной мере связаны с подкорковыми центрами, которые регулируются корой головного мозга. Поэтому они в некоторой степени поддаются торможению через вторую сигнальную систему.

Ожидания и опасения, усталость и бессонница повышают чувствительность человека к боли; при глубоком утомлении боль притупляется. Холод усиливает, а тепло ослабляет болевые ощущения. Болевые, температурные, тактильные ощущения и ощущения давления – разновидности кожных ощущений.

Органические ощущения – ощущения, связанные с интерорецепторами, расположенными во внутренних органах. К ним относятся ощущения сытости, голода, удушья, тошноты и др.

Интерорецепторы связаны с корой через подкорковые образования – гипоталамус. Органические ощущения не дают точной локализации, а иногда органическая рецепция носит подсознательный характер. Сильные отрицательные органические ощущения могут дезорганизовать сознание человека.

Сенсорная организация личности. Присущие индивиду уровни развития отдельных видов его чувствительности и особенности их системного функционирования называются сенсорной организацией личности. Чувствительность – потенциальная возможность человека, которая по-разному реализуется в различных условиях его жизнедеятельности. В зависимости от задач деятельности человека она может возрастать на несколько порядков. (Терапевты различают десятки различных шумов сердца, а сталевары – многочисленные оттенки варящейся стали.) При нарушении чувствительности одних анализаторов у человека резко возрастает чувствительность других.

У каждого человека имеются анатомо-физиологические предпосылки (задатки) для развития определенных сенсорных способностей. Отдельные люди – экстрасенсы обладают феноменальной чувствительностью. С развитием сенсорной культуры личности связаны ее способности реагировать на гармонию красок, запахов и звуков. Потребность в гармонизированных сенсорных воздействиях – одна из основных потребностей человека. Длительная сенсорная депривация (лишение чувственных воздействий) вызывает у человека психическое расстройство. В постоянном потоке нервных импульсов, поступающих в мозг от органов чувств, осуществляется живая связь каждого человека с внешним миром.

Гармония красок, звуков, вкусовых воздействий, мышечные ощущения от наших движений постоянно влияют на наше психическое состояние и общее мироощущение. Неприятные звуки, цветовые сочетания, гиподинамия резко снижают уровень психической активности человека.

Глава 2. Восприятие