Расчет принужденной составляющей

Правительство Российской Федерации

 

Федеральное государственное автономное образовательное учреждение

Высшего профессионального образования

«Национальный исследовательский университет

«Высшая школа экономики»

Московский институт электроники и математики

Национального исследовательского университета

«Высшая школа экономики»

Кафедра электроники и наноэлектроники

 

 

КЛАССИЧЕСКИЙ МЕТОД РАСЧЕТА ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Учебно-методическое пособие

По выполнению расчетно-графической работы

по дисциплине «Теоретические основы электротехники»

Москва 2013

 

 
 


Составитель проф., к.т.н. Е.Г. Осипов

 

Пособие содержит теоретические положения, необходимые для

выполнения расчетно-графических работ по курсу «Теоретические основы электротехники». Также приведены примеры расчета электрических схем.

 

 

УДК 621.3

 

 

Классический метод расчета переходных процессов в линейных электрических цепях: Учебно-метод. пособие по выполнению расчетно-графических работ по дисциплине «Теоретические основы электротехники» /

Московский институт электроники и математики Национального

исследовательского университета «Высшая школа экономики»;

Сост. Е.Г. Осипов. М., 2013. 26 с.

 

Ил. 16, библиогр. 4 назв.

 

ISBN 978-5-94506-311-2

 

 

 
 


Классический метод расчета переходных процессов в линейных

Электрических цепях

Суть классического метода расчета переходных процессов в линейных электрических цепях заключается в непосредственном решении системы линейных дифференциальных уравнений.

Любую схему замещения после коммутации можно однозначно описать с помощью системы независимых уравнений, составленных по законам Кирхгофа (ЗК).

Если эту систему уравнений решить относительно тока какой- либо ветви с учетом уравнений связи между током и напряжением на пассивных элементах, соответственно на сопротивлении, емкости и индуктивности , и , то получаем линейное неоднородное дифференциальное уравнение n-го порядка вида:

или или где .

Решение такого уравнения предоставляют в виде суммы двух слагаемых:

,

где - свободная составляющая тока;

- принужденная составляющая тока;

- общее решение однородного дифференциального уравнения.

,

форма записи которого зависит от вида корней характеристического уравнения. Характеристическое уравнение получают заменой в однородном дифференциальном уравнении k-той производной тока на переменную p в k-той степени, т.е. заменяют на .

Характеристическое уравнение имеет вид:

- частное решение неоднородного дифференциального уравнения, которое рассчитывают по виду правой части указанного уравнения.

Процедуру расчета переходных процессов можно разделить на 4 основных этапа:

1. Расчет принужденной составляющей тока .

2. Составление характеристического уравнения и определение его корней.

3. Расчет начальных условий.

4. Определение постоянных интегрирования.

Рассмотрим подробно каждый этап.

Расчет принужденной составляющей

Расчет принужденной составляющей зависит от вида источников эдс e и источников тока j в исследуемой схеме. Если источники постоянные, или гармонические одной и той же частоты, или периодические негармонические, то принужденную составляющую определяют, рассчитывая соответствующий установившийся режим в схеме после коммутации.

а) Источники постоянные: ,

определяют на основе анализа схемы установившегося режима постоянного тока (УРПТ) после коммутации. Для получения схемы УРПТ после коммутации необходимо в исходной схеме после коммутации сделать следующие замены:

Правомочность такой замены вытекает из того, что в установившемся режиме постоянного тока, по определению, токи и напряжения на всех элементах постоянны.

Для тока и напряжения на емкости и индуктивности справедливы соответственно уравнения

и .

В УРПТ, согласно определению, и и, следовательно, и . Эти равенства означают, что на схеме замещения ветви с емкостями можно разомкнуть, и зажимы, между которыми включены индуктивности, закоротить.

В результате таких преобразований получаем резистивную эквивалентную схему, по которой проводят расчет любым рациональным методом из рассмотренных в разделе «Анализ резистивных схем».

a) Источники гармонические одной и той же частоты

определяют на основе анализа установившегося режима гармонического тока (УРГТ) в схеме после коммутации. Расчет УРГТ проводят комплексным методом. Для этого по исходной схеме после коммутации составляют комплексную схему замещения и рассчитывают комплексное действующее значение искомого тока , а затем переходят к мгновенному значению

б) Источники периодические негармонические.

определяют на основе расчета установившегося режима периодического негармонического тока. Для этого периодические негармонические функции источников предоставляют в виде конечных тригонометрических рядов Фурье

,

где k – номер гармоники и принимает значение от 1 до n.

Затем, применяя принцип наложения, рассчитывают составляющие принужденной составляющей на каждой гармонике:

- на нулевой гармонике (постоянные источники ) в соответствии с пунктом а

- на каждой k-той гармонике (гармонические источники ) в соответствии с пунктом б.

Искомая принужденная составляющая тока

.

Если в схеме источники непериодические, то для расчета принужденной составляющей необходимо по схеме после коммутации на основе законов Кирхгофа получить неоднородное дифференциальное уравнение. Записать выражение для аналогичные виду правой части уравнения с неизвестными коэффициентами и подставить в дифференциальное уравнение. Затем приравнять коэффициенты у подобных членов справа и слева. В результате получают систему уравнений для расчета неизвестных коэффициентов. Следует заметить, что если источники непериодические, то расчет принужденной составляющей часто требует больших трудозатрат. Поэтому в этих случаях, как правило, анализ переходных процессов проводят операторным, а не классическим методом.