РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОГО ВАЛА
ПРИ КРУЧЕНИИ (ЗАДАЧА № 11)
Условие задачи
Стальной вал круглого поперечного сечения состоит из трех участков с различными полярными моментами инерции (рис. 3.6, а). Концы вала жестко закреплены от поворота относительно продольной оси вала. Заданы нагрузки: пары сил и , действующие в плоскости поперечного сечения вала; отношения полярных моментов инерции участков вала и ; длины участков , , .
Требуется:
1) построить эпюру крутящих моментов;
2) подобрать размеры поперечных сечений из условия прочности;
3) построить эпюру углов закручивания.
Решение
Ввиду наличия двух жестких опорных закреплений под действием нагрузки в каждом из них возникают реактивные пары и . Составив условие равновесия вала
,
Рис. 3.6. К решению задачи № 11: а – расчетная схема стержня; б, в – эпюры крутящих моментов и углов закручивания |
убеждаемся в том, что записанное уравнение не может быть решено однозначно, поскольку содержит две неизвестные величины: и . Остальные уравнения равновесия при данной нагрузке выполняются тождественно. Следовательно, задача является один раз статически неопределимой.
Для раскрытия статической неопределимости составим условие совместности деформаций. Вследствие жесткости опорных закреплений концевые сечения вала не поворачиваются. Это равносильно тому, что полный угол закручивания вала на участке А–В равен нулю: , или .
Последнее уравнение и есть условие совместности деформаций. Для его связи с уравнением равновесия запишем физические уравнения, связывающие крутящие моменты и углы закручивания (3.3) (закон Гука при кручении) , для каждого участка стержня:
, , .
Подставив физические соотношения в условие совместности деформаций, находим реактивный момент , а затем из уравнения равновесия определяем . Эпюра крутящих моментов показана на рис. 3.6, б.
Для решения задачи о подборе сечения запишем формулы для определения максимальных касательных напряжений (3.5) на каждом участке вала:
; ; .
Коэффициенты и , представляющие собой отношения полярных моментов сопротивления сечений второго и третьего участков вала к полярному моменту сопротивления сечения первого участка , определим через известные параметры и .
Полярный момент инерции может быть записан двояким образом:
; ,
где , - радиусы первого и второго участков стержня. Отсюда выразим радиус через :
.
Тогда полярный момент сопротивления второго участка
,
то есть . Аналогично .
Теперь можно сравнить между собой максимальные касательные напряжения на отдельных участках и для наибольшего из них записать условие прочности (3.13). Из этого условия находим требуемый полярный момент сопротивления , и затем, используя формулу (3.8), радиусы вала на каждом участке.
; ; .
Для построения эпюры углов закручивания вычислим углы закручивания на каждом участке стержня по формуле (3.3). Ординаты эпюры получаются последовательным суммированием результатов для отдельных участков, начиная с одного из концов вала. Контролем правильности решения является равенство нулю угла закручивания на другом конце вала Вид эпюры углов закручивания показан на рис. 3.6, в.
СПИСОК ЛИТЕРАТУРЫ
1. Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995.
2. Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977.
3. Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989.
4. Сопротивление материалов: Метод. указания и схемы заданий к расчетно-графическим работам для студентов всех специальностей / СПбГАСУ; Сост: И А. Куприянов, Н. Б. Левченко, Г.С. Шульман. СПб., 2010.
СОДЕРЖАНИЕ
Общие указания по выполнению расчетно-графических работ......................
Используемые обозначения........................................................................................
1. Растяжение-сжатие...............................................................................................
1.1. Расчет статически определимых стержневых систем..................................
Примеры решения задач.......................................................................................
1.1.1. Подбор сечения стержня, подверженного растяжению-сжатию (задача № 1).................................................................................................................
1.1.2. Определение напряжений и перемещений в стержне при растяжении-сжатии с учетом собственного веса (задача № 2)..............................................
1.1.3. Определение грузоподъемности статически определимой конструкции, работающей на растяжение-сжатие (задача № 3).............................................
1.2. Расчет статически неопределимых стержневых систем..............................
Примеры решения задач.......................................................................................
1.2.1. Расчет статически неопределимого составного стержня, работающего на растяжение-сжатие (задача № 4)......................................................................
1.2.2. Расчет статически неопределимой стержневой конструкции, работающей на растяжение-сжатие (задача № 5).............................................................
1.2.3. Определение грузоподъемности статически неопределимой шарнирно-стержневой конструкции (задача № 6)..........................................................
2. Исследование плоского напряженного состояния. Проверка прочности для сложного напряженного состояния.................................................................
Примеры решения задач.......................................................................................
2.1. Исследование плоского напряженного состояния по заданным напряжениям на произвольных площадках. Проверка прочности (задача № 7)..................
2.2. Исследование плоского напряженного состояния по заданным напряжениям на главных площадках. Проверка прочности (задача № 8).............................
2.3. Расчет длинной тонкостенной трубы, подверженной действию внутреннего давления, продольной силы и крутящего момента (задача № 9).....................
3. Кручение.................................................................................................................
Примеры решения задач.......................................................................................
3.1. Подбор сечения составного стержня (вала), работающего на кручение (задача № 10)...............................................................................................................
3.2. Расчет статически неопределимого вала при кручении (задача № 11).......
Список литературы.....................................................................................................
Нина Борисовна Левченко
Лев Марленович Каган-Розенцвейг
Игорь Александрович Куприянов
Ольга Борисовна Халецкая
СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
Часть 1
Редактор
Корректор
Компьютерная верстка
ЛР № 020282 от 24.12.96
Подписано к печати . Формат 60х84 1/16. Бум. офсетная.
Усл. печ. л. . Уч.-изд. л. . Тираж 500. Заказ . "С"
Санкт-Петербургский государственный архитектурно-строительный
университет. 198005, Санкт-Петербург, 2-я Красноармейская ул., д. 4.
Отпечатано на ризографе. 198005, Санкт-Петербург, 2-я Красноармейская ул., д. 5.
[1]. Для конструкции, имеющей жесткий стержень, рациональным уравнением равновесия, в которое входит одно неизвестное усилие, является уравнение , где А – шарнир, вокруг которого поворачивается жесткий стержень.
[2] Как видно из названия, этот способ применим к конструкциям, стержни которых выполнены из пластичного материала.
[3] Очевидно, что связь между деформациями стержней будет такой же, как и в первой части задачи, поэтому уравнение совместности деформаций в третьей части задачи можно записать, используя ранее полученное уравнение, заменив в нем на .
[4] При решении этой задачи студенты заочной формы обучения выполняют только расчет по предельному пластическому состоянию. Остальные студенты решают задачу № 6 в соответствии с требованием преподавателя. Пункт 2, отмеченный значком *, не является обязательным и выполняется по желанию студента.
[5] Современные нормы строительного проектирования предусматривают несколько более сложный подход (введение отдельных коэффициентов запаса на нагрузку, свойства материала, условия работы конструкции). С этим студент познакомится при изучении курсов металлических, железобетонных и других конструкций.