Диапазоны значений целых чисел со знаком
Формат числа в байтах | Диапазон | |
Запись с порядком | Обычная запись | |
–27 ... 27–1 | –128 ... 127 | |
–215 ... 215–1 | –32768 ... 32767 | |
–231 ... 231–1 | –2147483648 ... 2147483647 |
Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины – семь разрядов.
В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.
Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.
Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде. Например:
Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.
1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:
2. Обратный код. Получается инвертированием всех цифр прямого кода абсолютной числа, за исключением разряда знака: нули заменяются единицами, а единицы — нулями. Например:
3. Дополнительный код. Получается из обратного кода при помощи прибавления единицы к его младшему разряду. Например:
Алгоритм перевода дополнительного кода отрицательного числа в прямой аналогичен алгоритму перевода прямого кода в дополнительный.
Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.
![]() |
|
![]() | 1. Запишите числа в прямом, обратном и дополнительном коде (формат 1 байт): а) 31; б) -63; в) 65; г) -126. 2. Найдите десятичные представления чисел, записанных в дополнительном коде: а) 11111000; б) 10011011. 3. Запишите дополнительный код числа, интерпретируя его как восьмибитовое целое со знаком: а) 4310; б) -4710; в) -10210. |
Тема 4.2 Арифметические действия с целыми числами
Основные понятия: прямой код числа, обратный код числа, дополнительный код числа, переполнение разрядной сетки формата числа.
Условные обозначения:
![]() | ![]() | ![]() |
![]() | Прочитайте текст. Во время чтения делайте пометки на полях, выделяя главное. |
В большинстве компьютеров операция вычитания не используется. Вместо нее производится сложение уменьшаемого с обратным или дополнительным кодом вычитаемого. Это позволяет существенно упростить конструкцию АЛУ.
При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:
1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:
Получен правильный результат.
2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:
Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –710.
3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:
Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.
4. А и В отрицательные. Например:
Полученный первоначально неправильный результат (обратный код числа –1110 вместо обратного кода числа –1010) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.
При переводе результата в прямой код биты цифровой части числа инвертируются:
10001010 = –1010.
При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа. Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.
5. А и В положительные, сумма А+В больше, либо равна 2n–1, где n – количество разрядов формата чисел (для однобайтового формата n=8, 2n–1 = 27 = 128). Например:
Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (16210 = 101000102), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.
6. А и В отрицательные, сумма абсолютных величин А и В больше, либо равна 2n–1. Например:
Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.
Все эти случаи имеют место и при сложении дополнительных кодов чисел:
Умножение и деление
Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции — окончательный результат.
Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.
Для иллюстрации умножим 1100112 на 1011012.
Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.
![]() |
|
![]() | Выполните действия, используя обратный и дополнительный коды: а) 9 - 2; б) 2 - 9; в) - 5 - 7 |