Вынужденные колебания в rlc-контуре
Ознакомьтесь с конспектом лекций и учебником. Запустите программу. Выберите «Электричество и магнетизм» и «Вынужденные колебания в RLC-контуре». (Если вы забыли, как работать с системой компьютерного моделирования, прочитайте ВВЕДЕНИЕ стр.5 еще раз). Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Необходимое запишите в свой конспект. Закройте внутреннее окно, нажав кнопку с крестом справа вверху этого окна.
ЦЕЛЬ РАБОТЫ
* Знакомство с компьютерным моделированием процессов в колебательном RLC-контуре.
* Экспериментальное подтверждение закономерностей при вынужденных колебаниях в RLC-контуре.
КРАТКАЯ ТЕОРИЯ
Повторите основные определения для колебательного движения, которые приведены в ЛР 1_4. Прочитайте также снова теорию к ЛР 2_3, в которой рассмотрены свободные колебания в контуре.
ВЫНУЖДЕННЫМИ КОЛЕБАНИЯМИ называются процессы, происходящие в контуре, содержащем конденсатор, катушку индуктивности, резистор и источник с переменной ЭДС, включенные последовательно и образующие замкнутую электрическую цепь.
Если ЭДС источника меняется по гармоническому закону, то в контуре наблюдаются вынужденные гармонические колебания. При этом ток в контуре также будет переменным, подчиняющимся закону Ома в комплексной форме.
КОМПЛЕКСНАЯ ВЕЛИЧИНА есть определенная совокупность двух алгебраических чисел , где А – действительная часть, В – мнимая часть, Z – модуль, j - фаза комплексной величины. Графически изображается, как радиус-вектор на комплексной плоскости: его длина равна Z, а угол между вектором и горизонтальной (действительной) осью равен j.
КОМПЛЕКСНЫЙ ТОК и КОМПЛЕКСНОЕ НАПРЯЖЕНИЕ
Это векторы, которые вращаются с угловой скоростью w.
Здесь - комплексная амплитуда напряжения;
- комплексная амплитуда тока.
и - комплексные векторы, которые на комплексной плоскости неподвижны. Они соответствуют «мгновенной фотографии» реальных комплексных токов и напряжений, сделанной в начальный момент времени (t=0).
Комплексная амплитуда – сама комплексная величина, взятая в начальный момент времени.
Математически:
(импеданс), Z
Импеданс – это отношение комплексной амплитуды напряжения на данном элементе, к комплексной амплитуде тока через данный элемент.
Модуль импеданса называется ПОЛНЫМ ЭЛЕКТРИЧЕСКИМ СОПРОТИВЛЕНИЕМ цепи.
;
а) Резистор: ; ; фазы напряжения и тока одинаковые. Импеданс равен R: ZR .
Использовав его и закон Ома для комплексных величин, получим:
;
- импеданс катушки индуктивности.
Напряжение на катушке опережает по фазе ток через нее на p/2.
в) Конденсатор: или .
Пусть тогда .
Найдем отношение отсюда
- комплексное сопротивление (импеданс) конденсатора.
Напряжение на конденсаторе отстает по фазе от тока через него на p/2.
Модуль комплексного сопротивления (катушки или конденсатора) называется РЕАКТИВНЫМ СОПРОТИВЛЕНИЕМ (индуктивным или емкостным). Обозначается символом без крышечки над ним.
Все элементы в контуре соединены последовательно, поэтому для нахождения импеданса контура надо просуммировать импедансы всех элементов:
. После подстановки можем получить модуль импеданса т,е, полное сопротивление контура:
.
РЕЗОНАНСОМ для тока называется явление резкого увеличения амплитуды колебаний тока при приближении частоты ЭДС к некоторому значению, называемому резонансной частотой wРЕЗ . Не трудно видеть, что максимум амплитуды тока будет тогда, когда минимально полное сопротивление контура, или ZРЕЗ = R и , отсюда , что соответствует частоте свободных колебаний в контуре.
Максимум напряжения на конденсаторе соответствует резонансу для напряжения, который наблюдается при несколько меньшей частоте ЭДС:
.
d = - коэффициент затухания для данного контура.
Амплитуда резонансного напряжения на конденсаторе U0C пропорциональна амплитуде ЭДС и добротности контура Q: U0C = Q×e0 .
При не слишком большом затухании в контуре добротность определяется соотношением:
, где r = - называется характеристическим сопротивлением контура. Чем больше добротность, тем «острее» резонанс.
РЕЗОНАНСНОЙ КРИВОЙ называется зависимость амплитуды напряжения на конденсаторе от частоты ЭДС.
МЕТОДИКА и ПОРЯДОК ИЗМЕРЕНИЙ
Закройте окно теории. Внимательно рассмотрите рисунок для компьютерной модели.
Перерисуйте необходимое в конспект, используя обозначения, принятые в нашей теоретической части (e0 вместо V , U0C вместо VC , U0L вместо VL и U0R вместо VR).
Подготовьте таблицу 1, используя образец. Подготовьте также таблицы 3 и 4, аналогичные табл.1.