ВСЕЛЕННАЯ ПРЕПОДОБНОГО ЭВАНСА 3 страница
Правда, эти результаты удовлетворили не всех. Недостатком эксперимента с горой Шихаллион явилось то, что было невозможно получить точные цифры, не зная плотности горы. Хаттон для удобства принял ее равной плотности обычного камня, примерно в 2,5 раза больше плотности воды, но это было не более чем научное предположение.
Самой необычной на первый взгляд фигурой, уделившей много внимания вопросу о массе Земли, был сельский священник по имени Джон Мичелл, живший в глухой йоркширской деревушке Торнхилл. Несмотря на отдаленность проживания и сравнительно скромную должность, Мичелл был одним из выдающихся мыслителей XVIII века и как ученый пользовался большим уважением.
Среди множества прочих научных деяний он постиг волноподобную природу землетрясений, осуществил целый ряд оригинальных исследований в области магнетизма и гравитации и, что совсем удивительно, предвидел возможность черных дыр на две сотни лет раньше других – шаг, который не смог сделать даже Ньютон. Когда уроженец Германии музыкант Вильям Гершель решил, что его подлинным призванием в жизни является астрономия, за руководством, как делать телескопы, он обратился именно к Мичеллу, чьей любезной услуге вечно будет обязана наука о планетах*.
--
* (В 1781 году Гершель первым в нынешние времена открыл планету. Он хотел назвать ее Георгом в честь британского монарха, но предложение отклонили. Вместо этого она стала Ураном.)
Но из всего того, что оставил после себя Мичелл, по изобретательности и воздействию на развитие науки ничто не могло сравниться с механизмом, который он сконструировал и изготовил для измерения массы Земли. К сожалению, он умер, не успев осуществить эксперименты; идея и необходимая аппаратура перешли к выдающемуся, но потрясающе застенчивому лондонскому ученому по имени Генри Кавендиш.
Кавендиш сам по себе заслуживает отдельной книги. Родившийся в богатой титулованной семье – его деды были герцогами, один Девонширский, другой Кентский, – он был самым одаренным английским ученым своего века и в то же время самым странным. Он страдал застенчивостью, по словам одного из его немногих биографов, «граничившей с болезнью». Всякий человеческий контакт был для него источником глубочайшего дискомфорта.
Как-то раз, открыв дверь, он увидел на пороге одного из своих австрийских поклонников, только что приехавшего из Вены. Австриец принялся взволнованно бормотать о своем восхищении. Некоторое время Кавендиш воспринимал все эти комплименты словно удары палкой, а затем, не выдержав, убежал по дорожке и скрылся за воротами, оставив распахнутой входную дверь. Только спустя несколько часов его уговорили вернуться в собственный дом. Даже экономка общалась с ним по переписке.
Хотя иногда он отваживался появляться в обществе – особенно он любил бывать на званых научных вечерах, которые еженедельно проходили у выдающегося натуралиста сэра Джозефа Бэнкса, – остальным гостям всегда давали понять, чтобы они ни в коем случае не обращались к Кавендишу и даже не смотрели в его сторону. Тем, кто хотел знать его мнение, советовали не спеша, будто бы случайно, пройти поблизости и «говорить как бы в пустоту». Если их реплики заслуживали внимания с точки зрения науки, то они могли услышать невнятный ответ, но чаще всего в ответ раздавался раздраженный писк (голос у него, кажется, был очень высокий), и, оглянувшись, можно было действительно увидеть пустоту и спину Кавендиша, убегающего в более спокойный уголок.
Богатство и склонность к отшельничеству дали ему возможность превратить свой дом в Клэпеме в большую лабораторию, где он мог без помех бродить по всем уголкам физической науки – изучать электричество, тепло, силу тяжести, словом, все, что относилось к строению вещества. Вторая половина восемнадцатого века была временем, когда склонные к науке люди проявляли углубленный интерес к свойствам фундаментальных физических сущностей – в особенности газов и электричества, – начинали присматриваться к тому, что можно с ними сделать, проявляя зачастую больше рвения, чем здравого смысла. В Америке Бенджамин Франклин прославился тем, что, рискуя жизнью, запускал змея в грозу. Во Франции химик Пилатр де Розье испытывал воспламеняемость водорода, набирая его в рот и выдувая в открытое пламя. Одним махом он доказал, что водород действительно легко воспламеняется и что брови – не обязательная принадлежность лица. Кавендиш, в свою очередь, проводил эксперименты, в ходе которых подвергал себя воздействию электрических разрядов разной силы, старательно отмечая нарастание мучительных ощущений, пока оставалась возможность держать перо или сохранять сознание, но, впрочем, не далее того.
За свою долгую жизнь Кавендиш сделал ряд выдающихся открытий – среди многого другого он первым выделил водород и первым соединил водород и кислород, получив воду, – но почти все, что он делал, не обходилось без странностей. К постоянному недовольству его ученых коллег в публикуемых работах он часто ссылался на результаты экспериментов, о которых раньше не сообщал. В своей скрытности он не только напоминал Ньютона, но и во многом превосходил его. Его эксперименты с электрической проводимостью на столетие опережали время, но, к сожалению, оставались неизвестными, пока это столетие не прошло. На самом деле, большая часть проделанного им не была известна до конца XIX века, когда кембриджский физик Джеймс Клерк Максвелл[61] взял на себя задачу подготовки бумаг Кавендиша к печати; к тому времени почти все его открытия уже принадлежали другим ученым.
Среди многого другого, о чем Кавендиш никому не говорил, он открыл или предвосхитил закон сохранения энергии, закон Ома, закон парциальных давлений Дальтона, закон эквивалентов Рихтера, закон идеального газа Шарля, принципы электрической проводимости. И это лишь часть всех открытий. По утверждению историка науки Дж. Г. Кроутера, Кавендиш также предвосхитил «исследования Кельвина и Дж. X. Дарвина о замедляющем влиянии приливного трения на скорость вращения Земли, опубликованные в 1915 году, сообщение Лармора о локальном атмосферном охлаждении… работу Пикеринга о замораживающих смесях и некоторые из трудов Рузбума о гетерогенных равновесиях». Наконец, он получил результаты, которые непосредственно привели к открытию группы элементов, известных как инертные газы, часть из которых настолько неуловимы, что последний не удавалось обнаружить до 1962 года. Но нас в данном случае интересует последний из известных экспериментов Кавендиша, когда поздним летом 1797 года он в возрасте шестидесяти семи лет обратил внимание на ящики с аппаратурой, оставленные ему – очевидно, из чистого научного уважения – Джоном Мичеллом.
В собранном виде прибор Мичелла напоминал тренажер для накачивания мышц фирмы Nautilus, сделанный в XVIII веке. Он включал грузы, противовесы, маятники, рукоятки и скручивающиеся металлические тросы. Сердцевину прибора составляли два 350-фунтовых свинцовых шара, помещенные рядом с двумя шарами меньшего размера. Замысел состоял в том, чтобы измерить гравитационное отклонение малых шаров под воздействием больших, что позволило бы впервые измерить ускользающе малую величину гравитационной постоянной, а отсюда можно было бы вывести вес (а точнее говоря, массу)* Земли.
--
* (Для физика масса и вес – две совершенно разные вещи. Ваша масса остается той же самой, где бы вы ни находились, а вес изменяется в зависимости от того, как далеко вы расположены от центра другого массивного объекта, вроде планеты. Отправляйтесь на Луну, и там вы будете намного легче, но не менее массивны. На Земле же из утилитарных соображений масса и вес отождествляются, так что оба термина можно считать синонимами, по крайней мере, за пределами учебного класса. (Даже на Земле вес и масса – это разные вещи. Вес – это сила, с которой предмет давит на опору или тянет за подвес. А масса – это, грубо говоря, количество вещества в предмете. Свободно падающий камень ни на что не давит. Поэтому его вес равен нулю – он находится в невесомости. А вот масса у него сохраняется – это сразу чувствуется, если камень попадет вам в голову. – Прим. науч. ред.)
Из-за того, что сила тяжести удерживает планеты на орбите, а вещи, которые мы роняем, со стуком падают на пол, мы склонны думать, что это очень мощная сила, но на самом деле это не так. Она является мощной только в собирательном смысле, когда один массивный объект, такой как Солнце, удерживает другой массивный объект, подобный Земле. На элементарном уровне гравитация чрезвычайно слаба. Каждый раз, когда вы берете со стола книгу или поднимаете с пола монету, вы без труда преодолеваете гравитационное напряжение целой планеты. И вот Кавендиш как раз и попытался измерить притяжение между очень легкими предметами.
Ключом к успеху была точность. В помещении, где находился прибор, нельзя было допустить ни малейших помех, так что Кавендиш расположился в соседней комнате и вел наблюдения через специальный глазок с помощью телескопа. Работа была невообразимо изнурительной; потребовалось 17 точнейших взаимосвязанных измерений, выполнение которых заняло почти целый год. Когда наконец Кавендиш закончил расчеты, он объявил, что Земля весит чуть больше 13 000 000 000 000 000 000 000 фунтов, или 6 миллиардов триллионов метрических тонн, если пользоваться современной системой измерений. (Метрическая тонна – это 1000 кг, или 2205 фунтов.)
Сегодня ученые имеют в своем распоряжении приборы настолько точные, что могут определить вес отдельной бактерии, и настолько чувствительные, что могут дать сбой, если кто-то зевнет на расстоянии 20 метров, но они лишь незначительно уточнили результаты, полученные Кавендишем в 1797 году. По самым точным нынешним оценкам, Земля весит 5,9725 миллиарда триллионов тонн – разница по сравнению с данными, полученными Кавендишем, всего лишь 0,5 %. Интересно, что все эти измерения лишь подтвердили оценки, сделанные Ньютоном за 110 лет до Кавендиша без каких-либо экспериментов.
В целом, к концу XVIII века ученые имели очень точное представление о форме и размерах Земли и об ее удаленности от Солнца и планет; теперь же Кавендиш, даже не покидая дома, прибавил к этим сведениям массу Земли. Поэтому можно было бы ожидать, что определение возраста Земли окажется сравнительно простым делом. В конце концов, необходимые материалы лежат буквально у нас под ногами. Но нет. Люди расщепят атом, изобретут телевидение, нейлон и растворимый кофе, прежде чем определят возраст собственной планеты.
Чтобы понять, почему так случилось, мы должны отправиться на север, в Шотландию и начать со знакомства с яркой гениальной личностью, о которой мало кто слыхал, с человеком, который создал новую науку, называемую геологией.
КАМНЕЛОМЫ
Как раз в то время, когда Генри Кавендиш завершал свои эксперименты в Лондоне, в 400 милях от него, в Эдинбурге, наступал финальный момент иного рода – умирал Джеймс Хаттон. Разумеется, это было печальное событие для Хаттона, но, с другой стороны, оно открывало новые возможности для науки, ибо позволяло человеку по имени Джон Плейфер переписать труд Хаттона, не боясь попасть в неловкое положение.
По всем свидетельствам, Хаттон обладал проницательным умом, был живым собеседником, душой компании. Ему не было равных в понимании загадочных медленно текущих процессов, сформировавших Землю. К сожалению, ему не дано было изложить свои представления в доступном для всех виде. Он был, как заметил с тяжелым вздохом один из его биографов, «полным профаном по части владения словом». Почти от любой из написанных им строк клонило ко сну. Вот как он в своем шедевре 1795 года «Теория Земли с доказательствами и иллюстрациями» рассуждает… м-м, о чем-то:
«Мир, который мы населяем, составлен из материалов, не из почвы, которая была непосредственной предшественницей теперешней, а из почвы, которую, отталкиваясь от нынешней, мы считаем третьей и которая предшествовала суше, которая была над поверхностью моря, когда наша нынешняя суша еще была под водой океана».
И тем не менее именно он в одиночку, без посторонней помощи, блистательным образом создал геологическую науку и изменил наши представления о Земле.
Хаттон родился в 1726 году в состоятельной шотландской семье, и материальное положение позволило ему большую часть жизни посвятить широкому кругу доставлявших удовольствие нетрудных занятий и интеллектуальному совершенствованию. Он изучал медицину, но она не пришлась ему по вкусу, и тогда он обратился к сельскому хозяйству, которое вел, не слишком себя обременяя, но на научной основе, в родовом имении в Бервикшире. Потом поля и стада ему надоели, и он в 1768 году переехал в Эдинбург, где основал преуспевающее предприятие – стал производить из сажи нашатырь и занялся различными научными изысканиями. В то время в Эдинбурге собрались лучшие интеллектуальные силы, и Хаттон сполна использовал возможности обогащения своих знаний. Он становится видным членом общества, носившего название «Ойстер клаб» («Устричный клуб»), где проводит вечера в компании таких людей, как экономист Адам Смит, химик Джозеф Блэк и философ Дэвид Юм, а также изредка посещавших клуб знаменитостей вроде Бенджамина Франклина и Джеймса Уатта.
В традициях своего времени Хаттон интересовался практически всем – от минералогии до метафизики. Наряду со многим другим он экспериментировал с химическими препаратами, изучал способы добычи угля и строительства каналов, бывал в соляных копях, размышлял над механизмами наследственности, собирал окаменелости, выдвигал теории происхождения дождя и состава воздуха и даже формулировал законы движения. Но сферой его особых интересов была геология.
Среди вопросов, вызывавших интерес в этот фанатически любознательный век, был один, над которым люди долгое время ломали головы, а именно, почему раковины древних морских моллюсков и другие морские окаменелости так часто находят на вершинах гор. Как их туда занесло? Те, кто считал, что знают ответ, разделились на 2 противостоящих друг другу лагеря. Одна группа, известная как нептунисты, была убеждена, что все на Земле, включая морские раковины на невероятно возвышенных местах, можно объяснить повышением и понижением уровня моря. Нептунисты считали, что холмы, горы и другие детали рельефа стары, как сама Земля, и подвергались изменениям, только когда их заливало водой в периоды всемирных потопов.
Их оппонентами были плутонисты, которые отмечали, что вулканы и землетрясения наряду с другими активными процессами непрерывно меняют лицо планеты, но нет никаких признаков столь своенравного поведения морей. Плутонисты также задавали щекотливые вопросы, куда девается вода, когда не бывает потопов. Если ее хватало, чтобы затопить Альпы, то скажите тогда, где же она находится в спокойные времена, как теперь? По их убеждению, Земля наряду с поверхностными факторами подвергается воздействию мощных внутренних сил. Однако и они не могли убедительно объяснить, как туда, наверх, попали все эти раковины моллюсков.
Размышляя над этими парадоксами, Хаттон как раз и высказал ряд поразительных догадок. У себя на ферме он наблюдал, что почва создается в результате эрозии горных пород и что частицы этой почвы постоянно смываются и уносятся ручьями и реками, чтобы осесть в других местах. Он понял, что если бы этот процесс продолжался до своего естественного завершения, то в конечном счете Земля стала бы довольно ровной. Однако вокруг возвышались холмы и горы. Ясно, что должен быть какой-то дополнительный процесс, некий путь восстановления и поднятия, формирующий новые холмы и горы, поддерживающий весь этот цикл. Окаменелые морские существа, решил он, не оставались на вершинах после наводнений, а поднимались вместе с самими горами. Он также пришел к выводу что внутренний жар Земли создает новые горные породы и континенты, вздымает горные хребты. Будет не лишним заметить, что геологи почти двести лет не могли в полной мере осознать значение этой идеи, пока наконец не получила признание концепция тектоники плит. Главная особенность теории Хаттона состояла в том, что предполагаемые процессы формирования Земли требовали таких колоссальных отрезков времени, которые тогда никто не мог даже представить. Словом, озарений было достаточно, чтобы в корне изменить наши представления о Земле.
В 1785 году Хаттон изложил свои мысли в длинном докладе, который зачитал на нескольких заседаниях Королевского общества Эдинбурга. Доклад не привлек практически никакого внимания. Нетрудно понять причину. Вот иллюстрация того, как он излагал его содержание слушателям:
«В одном случае формирующей причиной служит тело, которое отделено; ибо после того, как тело приведено в действие теплотой, реакция соответствующего вещества тела создает трещину, которая служит основой для образования жилы. В другом случае причина опять является внешней по отношению к телу, в котором образуется трещина. Произошел очень резкий разрыв и разделение; но причину еще предстоит найти; и она, как представляется, не в жиле; потому что не в каждом разрыве или дислокации твердого тела нашей Земли обнаруживаются минералы или соответствующие породы минеральных жил».
Стоит ли говорить, что практически никто из слушателей не имел ни малейшего представления, о чем он говорил. Поощряемый друзьями развивать свою теорию и в трогательной надежде, что удастся выразиться как-нибудь пояснее в более объемном формате, Хаттон следующие десять лет посвятил подготовке своего выдающегося четырехтомного опуса, из которого два тома были опубликованы в 1795 году.
Каждый из них насчитывал почти тысячу страниц, и они превзошли опасения самых пессимистически настроенных друзей. Кроме всего прочего почти половина завершенного труда состояла из цитат французских источников, приводимых на языке оригинала. Третий том был настолько непривлекательным, что не издавался до 1899 года – больше 100 лет после смерти Хаттона, а четвертый том вообще не был издан. «Теория Земли» Хаттона – сильный кандидат на звание наименее читаемой среди основополагающих научных книг (впрочем, тут у нее есть серьезные конкуренты). Даже Чарлз Лайель, крупнейший геолог следующего столетия, читавший все подряд, признавался, что не смог осилить ее до конца.
К счастью, у Хаттона был свой Босвелл[62] в лице Джона Плейфера, близкого друга и профессора математики в Эдинбургском университете, который не только блестяще владел словом, но и благодаря многолетнему общению с Хаттоном в большинстве случаев действительно понимал, что тот пытался сказать. В 1802 году, через 5 лет после смерти Хаттона, Плейфер выпустил упрощенное изложение основных идей Хаттона, озаглавив его «Иллюстрации к Хаттоновой теории Земли». Книга была благодарно принята теми, кто проявлял живой интерес к геологии, а таких в 1802 году было не слишком много. Впрочем, это положение вскоре должно было измениться. Да еще как!..
Зимой 1807 года тринадцать проживавших в Лондоне единомышленников собрались в таверне франкмасонов, что на Лонг-Эйкр в Ковент-Гардене, с целью создать клуб, получивший название Геологического общества. Идея состояла в том, чтобы раз в месяц обмениваться мыслями по вопросам геологии за бокалом-другим мадеры и дружеским ужином. Стоимость ужина намеренно установили весьма изрядной, 15 шиллингов, дабы не поощрять тех, кто не мог подкрепить интеллектуальные заслуги также и финансовой самодостаточностью. Однако скоро стало очевидно, что требуется более солидная организация с постоянным помещением, где люди могли бы собираться, чтобы поделиться своими находками и обсудить их. Менее чем за 10 лет число членов общества возросло до 400 человек – разумеется, по-прежнему все джентльмены, – и Геологическое общество грозило затмить Королевское как главное научное общество страны.
Члены общества собирались дважды в месяц с ноября до июня, когда практически все разъезжались на лето для полевых изысканий. Понятно, что минералы интересовали их не из денежных и даже по большей части не из научных соображений, просто джентльмены, располагавшие средствами и временем, позволяли себе иметь хобби на более или менее профессиональном уровне. К 1830 году их насчитывалось 745 человек, и мир больше никогда не видел чего-либо подобного.
Сегодня трудно представить, что геология всколыхнула XIX век в такой мере, в какой этого не добивалась и не добьется ни одна наука – она буквально овладела им. Когда в 1839 году Родерик Мурчисон издал «Силурийскую систему», пухлую тяжеловесную книгу, в основном посвященную горным породам, называемым граувакками, она моментально стала бестселлером, выдержав подряд четыре издания, и это при том, что стоила она 8 гиней и была, в лучших хаттоновских традициях, нечитабельной. (Как признал даже один из поклонников Мурчисона, у нее «полностью отсутствовала литературная привлекательность».) А когда в 1841 году великий Чарлз Лайель ездил в Америку прочитать курс лекций в Бостоне, в Лоуэлловском институте собирались 3-тысячные аудитории послушать его убаюкивающие описания морских цеолитов и сейсмических возмущений в итальянской Кампании.
Во всем тогдашнем цивилизованном мире, но особенно в Британии, ученые мужи выбирались за город, чтобы, по их выражению, немного «поломать камней». К этому занятию относились всерьез, старались одеваться надлежащим образом – цилиндры, темные костюмы, за исключением разве что преподобного Уильяма Бакленда из Оксфорда, имевшего привычку выходить на полевые работы в академической мантии.
Полевые изыскания привлекали множество видных фигур, не в последнюю очередь уже упомянутого Мурчисона, который первые тридцать лет жизни или около того провел, гоняясь на коне за лисами и с помощью крупной дроби превращая парящих в воздухе птиц в комки разлетающихся перьев. Его интересы не простирались за пределы того, чтобы почитать «Таймс» или сыграть партию в карты. А потом у него проснулся интерес к камням и с поразительной быстротой он стал титаном геологической мысли.
Еще в этом кругу был доктор Джеймс Паркинсон, который к тому же был одним из ранних социалистов и автором множества провокационных брошюр под заголовками вроде «Революция без кровопролития». В 1794 году он оказался замешанным в граничившем с безумием заговоре, получившем название «заговора ружья-хлопушки», по которому намечалось убить Георга III выстрелом в шею отравленным игрушечным дротиком, когда король будет находиться в своей театральной ложе. Паркинсона приволокли на допрос в Тайный совет, и он был на волосок от того, чтобы закованным в кандалы отправиться в Австралию, когда обвинения против него без лишнего шума сняли. Примирившись с более консервативным подходом к жизни, он обнаружил интерес к геологии и стал одним из основателей Геологического общества и автором выдающегося труда по геологии «Органические останки прежнего мира», который продолжал издаваться целых полвека. В политических эксцессах он больше не участвовал. Правда, сегодня мы чаще вспоминаем его не в связи с геологией, а благодаря важному исследованию недуга, который тогда называли «дрожательным параличом», а теперь болезнью Паркинсона. (У Паркинсона был еще один небольшой повод претендовать на славу. В 1785 году он оказался, пожалуй, единственным человеком в истории, выигравшим в лотерею музей естественной истории. Музей, на лондонской Лейстер-сквер, был основан сэром Эштоном Левером, который из-за необузданного коллекционирования природных диковинок докатился до банкротства. Паркинсон содержал музей до 1805 года, но потом у него не хватило средств, и коллекция была распродана по частям.)
Не таким колоритным, но более авторитетным, чем все остальные вместе взятые, был Чарлз Лайель, родившийся в год смерти Хаттона в семидесяти милях от Эдинбурга, в деревне Киннорди. Шотландец по рождению, он вырос на крайнем юге Англии, в Хэмпшире, потому что его мать была убеждена, что шотландцы – праздные гуляки и пьяницы. В XIX веке наукой, как правило, занимались состоятельные люди дворянского происхождения. Лайель не был исключением – он вырос в обеспеченной интеллектуальной семье. Его отец, тоже Чарлз, был незаурядным человеком – видным авторитетом по Данте и по мхам. (Orthotricium lyelli, на котором не раз сиживали англичане, бывая за городом, назван его именем.) От отца Лайель унаследовал интерес к естественной истории, но только в Оксфорде, где он попал под влияние преподобного Уильяма Бакленда – того самого, в широкой мантии, – юный Чарлз на всю жизнь посвятил себя геологии.
Бакленд был милым чудаком. За ним числятся и реальные научные достижения, но не меньше помнят его за разного рода чудачества. Особенно запомнился его зверинец, в котором диким животным, в том числе крупным и опасным, позволялось бродить по дому и саду, а также его стремление отведать на вкус каждое живое существо. В зависимости от наличия и прихоти хозяина гостям Бакленда могли подать запеченную морскую свинку, мышей в тесте, жареного ежа или вареных морских слизней из Юго-Восточной Азии. Бакленд был способен во всех них находить достоинства, за исключением разве что обыкновенного садового крота, которого он находил отвратительным на вкус. В палеонтологии он стал главным авторитетом по копролитам – окаменелым экскрементам, – и у него был стол, вся поверхность которого была инкрустирована образцами из его коллекции.
Даже во время серьезных научных занятий его поведение было довольно своеобразным. Однажды среди ночи он растолкал свою супругу, возбужденно восклицая: «Дорогая, я убежден, что следы Cheirotherium несомненно черепашьи». В нижнем белье они вместе помчались на кухню. Миссис Бакленд замесила мягкое тесто и раскатала его по столу, а преподобный Бакленд притащил домашнюю черепаху. Плюхнув на стол, они стали ее подгонять и, к вящему восторгу, увидели, что ее следы действительно совпадают с окаменевшими отпечатками лап, изучением которых в то время занимался Бакленд. Чарлз Дарвин считал Бакленда шутом – он употребил именно это слово, но Лайель, похоже, нашел в нем наставника и в 1824 году даже отправился с ним в поездку по Шотландии. Вскоре после этой поездки Лайель решил оставить карьеру юриста и целиком посвятил себя геологии.
Лайель был страшно близорук и большую часть жизни страдальчески щурился, что придавало лицу встревоженное выражение. (В конце концов он полностью потерял зрение.) Другой его странностью была привычка, будучи погруженным в размышления, принимать самые невероятные позы – растягиваться сразу на двух стульях или «стоя на ногах, оставлять голову на сиденье стула» (слова его друга Дарвина). Часто, задумавшись, он так низко сползал с кресла, что едва не касался ягодицами пола. За всю жизнь Лайель только однажды имел должность – с 1831 по 1833 год он был профессором геологии в Кингз-колледже в Лондоне. Как раз в это время он выпустил в свет «Основы геологии», издававшиеся тремя томами с 1830 по 1833 год, в которых во многом суммировал и развил мысли, впервые высказанные Хаттоном поколением раньше. (Хотя Лайель никогда не читал подлинных трудов Хаттона, он досконально изучил вариант, переработанный Плейфером.)
Между временем Хаттона и временем Лайеля в среде геологов возник новый спор, который в значительной степени подменил, хотя их часто смешивают, старый спор нептунистов с плутонистами. Новая битва разгорелась между катастрофизмом и униформизмом – не слишком привлекательные термины для важного и очень долгого спора. Катастрофисты, как можно судить по названию, считали, что Земля сформировалась под воздействием внезапных катаклизмов, главным образом наводнений, – вот почему катастрофизм и нептунизм часто ошибочно сваливают в одну кучу. Катастрофизм особенно устраивал лиц духовных, вроде Бакленда, потому что давал им возможность включить в серьезные научные дискуссии библейский Ноев потоп. Униформисты, напротив, считали, что изменения на Земле происходили постепенно и что почти все процессы на земной поверхности протекали медленно, на протяжении огромных промежутков времени. Отцом этого представления был скорее Хаттон, нежели Лайель, но большинство людей читало Лайеля, и поэтому в сознании большинства, тогда и теперь, он остался родоначальником современных геологических представлений.
Лайель считал, что подвижки земной коры были равномерными[63] и непрерывными, что все когда-либо происходившее в прошлом можно объяснить явлениями, продолжающимися и сегодня. Лайель и его сторонники не просто презирали катастрофизм, они терпеть его не могли. Катастрофисты считали вымирание видов составной частью последовательных катастроф, в ходе которых животные неоднократно сметались с лица земли и заменялись новыми – картина, которую естествоиспытатель Т. Г. Гексли[64] насмешливо уподоблял «ряду робберов виста,[65] когда в конце каждого игроки опрокидывают стол и требуют новую колоду». Это был чересчур удобный способ объяснять неизвестное. «Еще не было догмы, более приспособленной к тому, чтобы поощрять леность и затуплять острие любознательности», – с презрением отзывался Лайель.
Впрочем, и у Лайеля были заметные упущения. Ему не удалось убедительно объяснить, как образовались горные системы, и он упустил из виду такой фактор, меняющий лик планеты, как ледники. Он отказался признать идею Луиса Агассиза о ледниковом периоде – «замораживании земного шара», как он пренебрежительно говорил, – и он был уверен, что млекопитающих «найдут в древнейших залежах ископаемых остатков». Лайель отвергал представление о том, что животные и растения претерпевали внезапное полное уничтожение, и считал, что все основные классы животных – млекопитающие, пресмыкающиеся, рыбы и т. д. – существовали параллельно с начала времен. Во всех этих вопросах он в конечном счете оказался не прав.
И все же вряд ли можно переоценить влияние Лайеля. При его жизни «Основы геологии» выдержали двенадцать изданий, а содержащиеся в них идеи определяли геологическую мысль еще долгое время в XX столетии. Дарвин взял первое издание «Основ» в путешествие на «Бигле» и впоследствии писал, что «огромной заслугой «Основ» было то, что они полностью меняли характер мышления, и поэтому, даже глядя на вещи, которые никогда не встречались Лайелю, ты тем не менее видел их отчасти его глазами». Словом, Дарвин, как и многие представители его поколения, считал Лайеля чуть ли не богом. Свидетельством влияния Лайеля на умы служит тот факт, что когда в 1980-х годах геологам пришлось частично отказаться от его теории, чтобы найти место для импактной теории вымираний,[66] для них это было смерти подобно. Но об этом в другой главе.